Home
Projects
Labs
Publications
Teaching
Events
Press
Collaborators
Job Openings
Light
Dark
Automatic
prognosis
Prognostic value of deep learning-derived body composition in advanced pancreatic cancer—a retrospective multicenter study
J. Keyl
,
A. Bucher
,
F. Jungmann
,
R. Hosch
,
A. Ziller
,
R. Armbruster
,
P. Malkomes
,
T. M. Reissig
,
S. Koitka
,
I. Tzianopoulos
,
P. Keyl
,
K. Kostbade
,
D. Albers
,
P. Markus
,
J. Treckmann
,
K. Nassenstein
,
J. Haubold
,
M. Makowski
,
M. Forsting
,
H. A. Baba
,
S. Kasper
,
J. T. Siveke
,
F. Nensa
,
M. Schuler
,
G. Kaissis
,
J. Kleesiek
,
R. Braren
Multimodal survival prediction in advanced pancreatic cancer using machine learning
J. Keyl
,
S. Kasper
,
M. Wiesweg
,
J. Götze
,
M. Schönrock
,
M. Sinn
,
A. Berger
,
E. Nasca
,
K. Kostbade
,
B. Schumacher
,
P. Markus
,
D. Albers
,
J. Treckmann
,
K. W. Schmid
,
H. -U. Schildhaus
,
J. T. Siveke
,
M. Schuler
,
J. Kleesiek
Low bone mineral density is a prognostic factor for elderly patients with HCC undergoing TACE: results from a multicenter study
Lukas Müller
,
Aline Mähringer-Kunz
,
Timo Alexander Auer
,
Uli Fehrenbach
,
Bernhard Gebauer
,
Johannes Haubold
,
Jens M. Theysohn
,
Moon Kim
,
Jens Kleesiek
,
Thierno D. Diallo
,
Michel Eisenblätter
,
Dominik Bettinger
,
Verena Steinle
,
Philipp Mayer
,
David Zopfs
,
Daniel Pinto Dos Santos
,
Roman Kloeckner
Cite
×