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Preface

The AutoImplant Cranial Implant Design Challenge (AutoImplant 2020: https://
autoimplant.grand-challenge.org/) was initialized jointly by the Graz University of
Technology (TU Graz) and the Medical University of Graz (MedUni Graz), Austria,
through an interdisciplinary project “Clinical Additive Manufacturing for Medical
Applications” (CAMed: https://www.medunigraz.at/camed/) between the two institu-
tions. The project aims to provide more affordable, faster, and patient-friendly solutions
to the design and manufacturing of medical implants, including cranial implants, which
is needed in order to repair a defective skull from a brain tumor surgery or trauma.

In most of the current clinical practices, cranial implants are designed and manu-
factured externally of the hospitals, and the design process requires commercial soft-
ware and professional designers. Thus, the procedure remains to be time-consuming,
expensive, and patient-unfriendly (in the worst-case scenario, the patient has to come
back to the hospital several times, getting repeatedly anesthetized, until a fitting implant
is designed, manufactured, and implanted).

Recent years have witnessed an increase in computer-aided design (CAD) of cranial
implants, which exploits free, open-source, and easy-to-use software. However, these
CAD approaches still cannot fit in with an ‘in operation room (in-OR)’ cranial implant
manufacturing pipeline, as they are not fast enough and require heavy human
interactions.

In order to tackle the aforementioned problem, the First AutoImplant Cranial
Implant Design Challenge (AICIDC) was held as a satellite event at the Medical Image
Computing and Computer Assisted Interventions (MICCAI 2020) conference in Lima,
Peru, (held virtually due to COVID-19), with the aim to attract worldwide solutions for
a fast and fully automatic cranial implant design. To date (beginning of October, 2020),
the challenge attracted 150 registered users from all over the world (please see the
world map at the end of the preface) who obtained access to the challenge dataset. The
participants come from different backgrounds, like academia and industry. In the
design of the challenge, cranial implant design was being technically formulated as a
3D volumetric shape learning problem, as the skull itself can be viewed as a two
dimensional manifold embedded in a three dimensional volumetric space (of a com-
puted tomography scan). The implication behind such formulation is twofold. First, if a
complete skull can be predicted given a corrupted skull, the cranial implant can be
obtained by simply taking the difference between the two skulls (shape completion).
Second, from the perspective of shape learning, it is also possible to predict directly the
missing portion i.e., the implant from a corrupted skull.

Such a problem formulation also opens the possibility of solving the medical
problem with a much broader methodology, such as deep learning, statistical shape
model (SSM), and therefore a fully automated cranial implant design pipeline can be
envisaged.

https://autoimplant.grand-challenge.org/
https://autoimplant.grand-challenge.org/
https://www.medunigraz.at/camed/


It is a well-known characteristic that learning-based solutions are built upon large
quantities of labeled data. However, the real defective skulls from a brain tumor sur-
gery or trauma are difficult to obtain, due to both the rarity of related operations and the
requirement of the approval from the institutional review board (IRB). We solve this
issue by ‘faking’ defects on normal/healthy skulls, as head CT scans are required in
many clinical routines and thus it is possible to collect them in larger quantity.

The challenge dataset was adapted from the public head CT collection CQ500
(http://headctstudy.qure.ai/dataset). We selected over 200 healthy skulls and on each
of them a virtual defect is injected. The resultant defective skulls serve as the input
while the original healthy skulls or the removed bony structure serve as the ground
truth (100 for training and 100 for testing). The virtual defects are simplified compared
to those from craniotomy and trauma, which tend to have greater irregularity. An
additional test set containing 10 skulls with distinct defect shapes, sizes, and positions,
from those in the training and test set has been additionally created. These cases are
used to evaluate how well the algorithms generalize to varied defects – a characteristic
highly desired in clinical practice as the defects from craniotomy also vary depending
on the intracranial pathology to be operated on for each particular patient. (note, we
also have a data article in submission about our collection, which has taken longer than
expected to get published. However, to make the proceedings complete we also pro-
vided a data description at the beginning of these proceedings). Having a uniform
collection of datasets for a challenge has the advantage to also have a uniform and
objective evaluation for the submitted results of the various algorithmic approaches.
A drawback is, however, that this course of action does not provide a quantitative
evaluation for further cases ‘outside’ the challenge dataset pool. At the very most, the
challenge results can be see as proof of concept that provides an indication for the
general field as a whole. It would also not be feasible to cover all medical centers with
their specific scanners and scanner protocols in a single challenge or research work.
Nonetheless, to increase the variety slightly, we included one work within these pro-
ceedings that uses a data collection that is completely independent from the official
challenge datasets, which shows and proves a principle translation of our challenge
goal to other medical image acquisitions. In future organizations of the challenge, we
plan to provide real clinical craniotomy skulls as the final pool of evaluation. In
addition, we are working on a second collection of skulls, which will allow a multi-
center evaluation of algorithms.

We released the whole training set to the registered participants. However, for the
test set, only the defective skulls are released. The ground truth skulls and implants are
kept by the organizers. For evaluation, participants submit the predicted implants to the
organizer and a .csv file containing the scores, Dice Similarity Score (DSC) and
Hausdorff distance (HD), and each of the test cases are returned to them. The final
ranking is obtained by taking the average of the DSC ranking (in descending order) and
the HD ranking (in ascending order).

Until the submission deadline (September 14, 2020), 10 manuscripts were received
and 9 of them received an early acceptance after double-blind reviews. One got
accepted after rigorous revision and rebuttal based on the reviewers’ comments. Each
paper was assigned three to four reviewers. The camera-ready version of these papers
are 8–12 pages long. Of the 10 accepted solutions, 6 of them are able to make accurate

vi Preface
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predictions on all the 110 test cases, while the other 4 fail on the additional 10 test
cases. The accepted solutions cover a wide spectrum of methodologies such as sta-
tistical shape models, generative adversarial networks, and auto-encoder style neural
networks. In these papers, two essential problems were addressed: 1) How to efficiently
tackle high dimensional data in deep learning; and 2) How to improve the general-
ization performance of deep learning models through the use of shape priors, regu-
larization, and data augmentation. The generalization performance in our challenge
mainly refers to the ability to generalize to varied skull defects. These solutions can
therefore serve as a good benchmark for future publications regarding 3D volumetric
shape learning and cranial implant design.

Finally, to enable the easy-accessibility of automatic cranial implant design solu-
tions to non-technical users, we implemented a web-based platform – StudierFenster
(http://studierfenster.at/ or http://studierfenster.icg.tugraz.at/), where these solutions can
be integrated. As an example, one of our previous automatic cranial implant design
solutions (deep learning-based) was implemented in StudierFenster and can be
accessed via a web browser. Please stay healthy!

World Map: Snapshot of the AutoImplant challenge as of the beginning of October
2020, showing the overall number of registered participants and the geographic dis-
tribution around the world.

October 2020 Jianning Li
Jan Egger

Preface vii
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Patient Specific Implants (PSI)
Cranioplasty in the Neurosurgical Clinical Routine

Gord von Campe(B) and Karin Pistracher

Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz,
Austria

gord.von-campe@medunigraz.at

Abstract. Implants are an important instrument inmodernmedicine for providing
patients with a higher quality of life after accident- or disease-related functional
limitations. In cranial neurosurgery, reconstructive implants are primarily used to
restore normal skull function and anatomical integrity after severe head trauma,
resection of bone affecting tumors, or bone loss due to infection or spontaneous
postoperative bone flap resorption. Patient specific implants (PSI) are custom-
made implants manufactured to each patient’s individual anatomical specifica-
tions, and the advent of new manufacturing techniques and materials opens the
opportunity for a closer integration into the clinical routine. The following contri-
bution aims at giving non-medical participants of the AutoImplant challenge some
insight into the neurosurgical perspective on when cranial implants are needed,
what the surgical procedures are, what cranioplasty methods currently are avail-
able, what criteria should be met by the implants, and where the limitations of the
current manufacturing solutions lie.

Keywords: Neurosurgery · Cranioplasty · Patient specific implant · 3D printing

1 Patient Specific Implants (PSI) in Cranial Neurosurgery

1.1 Primary Indications for Cranioplasty in Neurosurgery

Cranial bone defects are the result of a number of traumatic and pathological processes
and can occur anywhere in the skull.

In severe head injuries with complex comminuted fractures, a reconstruction of the
multiple, in the case of open injuries even sometimes contaminated bone fragments is
not always practicable or advisable, so that their surgical removal will result in a loss
of cranial bone. Although a decompressive craniectomy might initially be indicated to
allow for brain recovery from brain swelling, ultimate covering of the bony defect will
be required.

Various benign and malignant neoplastic diseases can either remodel or destruct
the skull bone structures. Meningiomas are intracranial, mostly benign tumors arising
from the arachnoidal cells of the meninges (membranous layers surrounding the brain).
They can cause osteocondensation of the adjoining bone, which, in extreme cases, will
cause a deformation of the skull visible from the outside. The anaplastic (malignant)

© Springer Nature Switzerland AG 2020
J. Li and J. Egger (Eds.): AutoImplant 2020, LNCS 12439, pp. 1–9, 2020.
https://doi.org/10.1007/978-3-030-64327-0_1
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2 G. von Campe and K. Pistracher

variants can have a highly aggressive, infiltrative and osteodestructive growth pattern.
Other examples of skull bone involving tumors include Langerhans cell histiocytosis
(histiocytosis X), haemangiomas, cavernous angiomas (see Fig. 1), benign (osteomas,
fibrous dysplasias) or malignant (osteosarcomas) primary bone tumors and secondary
metastatic tumors (carcinomas). Surgical treatment or diagnostic procedures of these
tumors will generally result in a more or less extensive bony defect that will require
appropriate covering or filling.

Fig. 1. Cavernous angioma of the left frontal bone causing visible and palpable bone deformity
under the skin. (A) Surgical removal is achieved by placing a small burr hole near the lesion,
which is then drilled out using a vertical craniotome (milling cutter). (B) Removed lesion with
healthy bone margins. (C) Resulting skull bone defect with intact underlying meningeal layer. (D)
Non-PSI covering of the defect with a small titanium mesh.

Spontaneous resorption of reimplanted bone flaps after a neurosurgical procedure
is a well-recognized complication in children, but also occurs more frequently than
initially suspected in the adult population [1]. Resulting loosening and shrinking of the
bone flap with pain symptoms, visible deformation (skin retraction) and wound healing
complications frequently require a secondary surgical intervention to correct the defect.

Primary and secondary (postoperative) bone infections also account for a number
of skull bone defects. Surgical treatment of an intracranial empyema might make the
reimplantation of the adjoining bone flap less than desirable, and postoperative bone
flap infections usually require the permanent removal of the affected bone flap. After
appropriate antibiotic treatment, the resulting bone defect will entail delayed covering.

1.2 Patient Specific Implants (PSI)

Regardless of the primary origin of the neurocranial skull bone defect, it might lead to
functional and physical complaints if left uncovered. Also, given the important role that
the head in general plays in the individual uniqueness, additional emotional and body
schema integrity disturbances will ultimately negatively impact the patient’s quality of
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life. Various methods and techniques are currently available to substitute for the bone
loss: their common goal is to restore the mechanical function, reinstate the protective
role (brain) and reestablish a normal anatomical state.

“Generic” implants generally consist of either (mostly) autologous bone grafts (e.g.
split calvarial, rib), bone cement (e.g. Palacos®), ormalleablemetallic (titanium)meshes
(see Fig. 1D and 2). These methods mainly restore the mechanical and protective func-
tions. Aesthetic results can be somewhat improved by using prefabricated molds based
on the patient’s anatomy to appropriately shape the cement [2] or mesh [3]. The main
advantages are a high intraoperative availability and a relatively low cost. However,
aesthetic results can be suboptimal and anatomical structures are only partially restored
[4].

Fig. 2. Non-PSI solution using a titaniummesh to cover a large skull bone defect. Tack-up sutures
can be seen to reduce the void between the mesh and the underlying meningeal layer (as opposed
to a PSI which would fill the defect, reestablishing the thickness and contour of the missing bone).

Patient specific implants (PSI) on the other hand are custom-made implants based
exactly on each and every individual patient’s anatomical bony structures and relation-
ships as inferred fromhigh resolution computer tomographic reconstructions (see Fig. 3).
Several materials andmanufacturing techniques (milling, 3D printing) are commercially
available: PEEK (polyether ether ketone, e.g. Stryker, Synthes, XillocMedical, 3di, KLS
Martin Group), titanium (e.g. 3di, Ortho Baltic Implants, KLSMartin Group), bioceram-
ics (e.g. 3di), and calcium phosphate composite (e.g. OssDsign), to name only a few. In
addition to restoring the mechanical and protective functions, these custom-fit implants
also achieve a perfect cosmetic repair. There is however a higher cost involved, and,
due to the out-of-clinic production, this solution is generally not available immediately
(intraoperatively). Also, additional imaging and exposure to ionizing radiation will be
required, as modelling is based on computed tomography (CT).
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Fig. 3. Creative process of a PSI. (A) High resolution 3D reconstruction of the patient’s skull,
based on high resolution CT scan images after segmentation, showing the bony defect to be filled.
(B) Implant modelling to restore function and normal anatomical relationships. (C) Resulting
computerized implant model ready for manufacturing.

2 Clinical Workflow

2.1 Current Clinical Workflow

Generally speaking, and regardless of the reason that led to the skull defect, the use of a
PSI entails several steps as outlined in Fig. 4: a primary surgery, an appropriately timed
high resolution CT scan, an external design and manufacturing process, and finally a
delayed second surgery for the implantation of the PSI.

Fig. 4. Summary of the current clinical workflow when a PSI is used.

In severe traumatic head injurywith complex comminuted fractures, primary surgery
consists of removal of the bone fragments and - depending on the absence or presence
of brain swelling - covering or not of the resulting skull defect. Since primary surgery is
always performed in an emergency setting, concomitant implantations of a PSI is never
possible, and immediate covering, if clinically appropriate, is often done using metallic
meshes, since these are readily available. If the use of a PSI is indicated (mostly based
on size and location of the defect), its implantation will require a second surgery after
recovery from the initial traumatic brain injuries.

Tumorous skull involvement with bony remodeling or destruction warrants excision
of the altered bone, allowing for a healthy margin. Althoughmostly not done as an emer-
gency procedure, the preoperative determination of the exact extent of the bone resection
is not always possible solely based on diagnostic imaging, since tumor infiltration might
go beyond the radiologically visible borders; in most cases it is therefore not feasible
to design and obtain a PSI before the primary surgery has taken place. Furthermore,
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a perfect fit of a prefabricated PSI would require a precise navigational-guided bone
resection, which is not always practicable. In most cases therefore a decision has to be
made, again based on location and size of the resulting defect, whether to use a mesh
for immediate/temporary covering, or a PSI which will require a second operation.

Although metallic meshes can and have been used for concomitant covering of a
skull defect resulting from the removal of an infected postoperative bone flap, imme-
diate availability of a PSI in this situation is not of high priority, as its implantation is
usually postponed to after completion of an appropriate antibiotic therapy course, which
generally takes several weeks anyhow.

Except in the setting of infectious bone involvements, where the bony structures are
rarely completely destroyed or majorly remodeled, normal anatomymight not be known
prior to surgery. Head trauma often involves younger adults, without prior “normal”
imaging, and in tumor cases diagnostic imaging shows the already altered bone. Only if
the patient had some imaging done for other reasons before the traumatic or pathological
process occurred or was known, could these images potentially be used as a “template”
for the implant design. However, even if available, prior imaging is rarely of sufficiently
high resolution to be usable for adequate 3D reconstructions.

2.2 Possible Future Workflow

Obvious shortcomings of the current clinical workflow are:

1) Timing: As the use of pre-designed implants is quite coercive and surgically not
very practicable, PSIs are generally not readily available at the time of the first
surgery. Also, since natural remodeling of the skull defect does occur over time,
high resolution CT imaging and implant manufacturing have to be carefully timed
to ensure a perfect fit (only plastic polymer implants can be reworked intraoperatively
if needed).

2) Costs: Although they perfectly fulfill all requirements (mechanical, functional and
cosmetic) for an ideal reconstruction of various skull defects, PSIs are usually much
more expensive than the “generic” solutions. Depending on size and/or location
of the defect, the latter are therefore frequently used instead of PSIs for economic
reasons.

3) CT imaging: Current implant design strategies rely on a 3D skull/defect model
obtained by segmentation of a high resolution CT scan. This requires specific imag-
ing protocols defined by the manufacturers and exposes the patient to additional
ionizing radiations (1.5–2.3 mSv vs. around 1.2 mSv for a conventional diagnostic
CT scan).

Access to an onsite manufacturing facility could greatly improve implant availability
by reducing image transfer times and allowing for rapid imaging protocol error correc-
tions, by decreasing production times, and by tightly integrating with the planning of the
surgical procedure. Cost reduction could be achieved through the use of more econom-
ical polymers and manufacturing procedures (e.g. block milling vs. filament printing),
making PSIs accessible to all patients, regardless of insurance coverage, defect size or
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defect location. A possible in-house workflow using a cost-effective medical 3D printer
is outlined in Fig. 5, but also introduces new challenges yet to be overcome.

Fig. 5. Possible clinical workflow using an in-house 3D implant design and printing solution.

3 Cranial Implant Generation Challenges

3.1 Imaging and Anatomy

PSIs are custom-made to perfectly fit individual anatomical specifications and features.
Their design requires an anatomical model of the patient’s skull and bone defect as a
common ground (see Fig. 3A). Currently, this model is generated by extracting the bony
skull structures from a high resolution CT scan (see Fig. 6).

Fig. 6. Segmentation procedure. Starting point are high resolution CT scan images (A). Using
thresholding or higher-level methods, the bony skull structures (in green) are isolated from the
surrounding soft tissue (B), resulting in a high resolution mask layer (C). A 3D model of the skull
(see Fig. 3A) can then be created by combining multiple high resolution mask layers from the
same high resolution CT scan into a volume.

Segmentation can be time-consuming and necessitates specific software and appro-
priate knowledge. Automatic segmentation can be difficult, since bone density can vary
by age, gender and anatomical location. Furthermore high resolutionCT imaging exposes
the patient to non-negligible amounts of additional ionizing radiations. Intraoperative
implant generation would require intraoperative CT imaging, which is commonly not
available. To address some of these limitations, a light-weight hand-held laser scanner
could be used: easy to operate and handle, fast in generating 3D models (of the skull
defect), its contactless mode of operation is ideally suited for the sterile environment of
an operating room.
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3.2 Implant Model Design

PSImanufacturing always requires a 3Dmodel of the implant to be produced. The proper
filling of the skull defect is mostly done manually and requires adequate anatomical
knowledge: in most cases normal (i.e. premorbid) anatomy is not known, and mirroring
is only of limited use since skulls are rarely perfectly symmetric (or the defect is over the
midline, thus affecting both sides at the same time). The removed bone flap can only be
used as a template if the underlying pathological process is neither bone remodeling nor
bone destructing. A desirable approach could be a fast (semi-)automatic implant design
using deep learning algorithms trained on a large structured database of segmented skull
CT scans (allowing for variations in age, gender, etc.).

3.3 Implant Manufacturing

Total implant generation time is the sum of segmentation time, model design time,
manufacturing time and sterilization time. If a custom implant is to be made available
at the end of the primary surgery, manufacturing will require a reasonable fast process,
which can be either subtractive or generative.

In subtractive processes, 3Dmodels are milled from a block of material in computer-
controlled CNC (Computer Numerical Control) milling machines [5]. This method is
mainly used for titanium or PEEK implants [6].

In generative processes, material is added layer by layer in a computer-controlled
manner. These so called 3D printing processes are particularly suitable for polymers and
allow for geometrically muchmore complex shapes to be generated from the digital data
thanmilling.Well established processes include stereolithography (SLA) for photoactive
synthetic resins, selective laser sintering (SLS) for metal or plastic powders, and fused
deposition modeling (FDM) for thermoplastics. Limiting factors include machine speed
and time required for the material cool down and/or polymerization.

4 Requirements for Cranial Implants

Due to the value and complexity of the underlying anatomical structures (brain), cranial
PSIs have to fulfill several requirements:

1) Mechanical properties: Ideally, weight, resistance and stiffness of the implant should
be identical to the missing skull bone it replaces. This implies adequate power
absorption anddissipation in cases of a light trauma, andultimate controlledbreakage
(“crumple zone”) in a major trauma to prevent or minimize direct brain injury by
the implant itself.

2) Biocompatibility: Chemical interaction with or compound diffusion into the sur-
rounding bone and soft tissue (meninges, muscles, skin) needs to be nonexistent or
minimal, since toxic or heavy inflammatory reactions can lead to increasedmorbidity
(painful swelling), delayed wound healing or even implant rejection.

3) Thermostability: Adequate brain insulation from cold and sufficient protection from
excessive heat require an implant material with low thermal conductivity. It also has
to be able to sustain higher temperatures without deformation for proper washing
and sterilization prior to implantation.
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4) “Implantability”: The free borders of the skull defect might exhibit slow regenerative
changes between the time the implant was produced and is finally implanted, which
might lead to misfitting. The implant material should therefore allow for small size
or shape adjustments using standard intraoperative burrs and tools. Ordinary bone
flap fixation methods (sutures, clamps, micro plates and screws) should also be
applicable to PSIs, ideally with freely selectable fixation points.

5) Diagnostic compatibility: As either the underlying pathology that caused the skull
defect (e.g. tumor) or future diseasesmight require further CT ormagnetic resonance
imaging, the properties of the compound used for the implant should cause no or
only minimal radiological artifacts.

Although a large number of new alloplastic materials for orthopedic and craniofacial
surgery have been developed in the past [7], most commercially available implants
are currently made from metal (titanium) or biocompatible plastic polymers (PEEK,
poly(methyl methacrylate)(PMMA)). Metal implants have a high thermal conductivity,
resulting in unpleasant sensations for the patient at both low and high temperatures
in the case of cranial implants. Evaluation of postoperative or follow-up radiological
images is made difficult by the metal-associated artifacts, which can also negatively
impact possibly needed radiation-based treatments. Finally, metal implants cannot be
easily reworked intraoperatively in the event of fitting inaccuracies. Polymer implants,
on the other hand, have a low thermal conductivity, high radiolucency, do not interfere
with radiation therapy, are easily reworkable intraoperatively, and compare favorably
with bone in their biomechanical properties. In cranial implants PEEK has emerged as
an industry standard fulfilling all these requirements with a very low complication rate.

5 Conclusion and Outlook

Cranial reconstructive procedures might be required immediately, i.e. at the end of the
primary surgery, or implemented later in a second surgery. Currently, immediate non-PSI
cranioplasty is mainly achieved usingmalleable metallic meshes or manual modelling of
bone cement (e.g. Palacos®). The latter method allows for more flexibility, but requires
sculpturing skills; cement polymerization is a highly exothermic reaction, and the acrylic
material can trigger a marked local inflammatory reaction. Although these approaches
are cost-effective and usually acceptable for small defects, they can lead to suboptimal
biomechanical and cosmetic results in cases of larger defects.

An in-house PSI design and manufacturing process might obviate the necessity for
a delayed second surgical procedure, potentially lessening complications and reducing
overall hospital costs. Time however represents a major challenge, since implant design,
manufacturing and sterilization have all to be accomplished within the non-extensible
timeframe of the primary surgery.

Implant manufacturing always requires a computerized 3Dmodel, but 3Dmodelling
is not a primary medical or surgical skill: appropriate 3D artist or CAD abilities are
required, and, depending on the size and complexity of the implant, its design can be time-
consuming. Current developments in deep learning algorithms might (semi-)automate
this task, bringing us one step closer to a “virtual warehouse” of readily available, but
custom-fit, patient specific implants.
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Fast 3D printing hardware is already available, but manufacturing speed is mainly
dictated by the physicochemical properties of the applied material: only medically
approved polymers (e.g. PEEK) can be used for PSIs, and their heating, cooling and
polymerization times are given constants. However, the design of new biocompatible
high-performance polymers with different properties might open the way for faster
implant manufacturing processes. This will require further close cooperation between
clinicians, engineers, materials scientists, computer scientists and basic researchers.
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Abstract. This data descriptor elaborates on a dataset that can be
used for the development of automatic, data-driven approaches for cra-
nial implant design, which is a challenging task in cranioplasty. The
dataset includes 210 complete skulls as well as their corresponding defec-
tive skulls and the implants, resulting in a total of 210 × 3 = 630 files
in NRRD format. We split the dataset into a training set and a test
set, each containing 100 and 110 completes skulls as well as the associ-
ated defective skulls and implants, respectively. The complete skulls are
segmented from the public head computed tomography (CT) collection
CQ500 (http://headctstudy.qure.ai/dataset), which is licensed under CC
BY-NC-SA 4.0, using thresholding (Hounsfield units ≥ 150). On each
complete skull, a synthetic defect, which resembles a real defect from
craniotomy, is injected. In the test set, 100 skulls have similar defects to
the training set, with respect to defect size, shape and position, while
the last 10 skulls have distinct defects. The whole training set and the
defective skulls in the test set are released to the participants of the MIC-
CAI 2020 AutoImplant Challenge (https://autoimplant.grand-challenge.
org/). The ground truth of the test set, i.e., the complete skulls and the
implants are kept private by the organizers for a single blind an objective
evaluation of the participant’s results.

Keywords: AutoImplant dataset · Descriptor · Deep learning ·
Cranial implant design

1 Data Origin and Selection Criteria

The challenge dataset is adapted from a public head computed tomography (CT)
collection CQ500 (http://headctstudy.qure.ai/dataset), which is licensed under
CC BY-NC-SA 4.0. In consultation with our medical partners, we selected 200
unique skulls from the collection based on the criteria that the skulls should
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be complete (without evident damage and deformity of the cranial bone) and
the images are of high-quality (slice thickness less than 1 mm). In case a Dig-
ital Imaging and Communications in Medicine (DICOM) file contains multi-
ple series/studies, only the study with the highest number of slices have been
selected. The volumetric dimension of the skulls is 512 × 512 × Z, where Z is
the number of axial slices. The original head CT is in the format of DICOM
and each selected DICOM file is converted to a single nearly raw raster data
(NRRD) file for easier handling and further processing within the challenge.

2 Skull Processing

The overall workflow of converting the raw NRRD files to the challenge dataset
is shown in Fig. 1. The workflow contains three major operations: skull segmen-
tation, denoising, and defect injection. Each operation is explained below.

Fig. 1. Dataset creation workflow (from left to right): The head computed tomography
(CT) scan, skull segmentation using thresholding, CT head holder removal, artificial
defect injection and the implant (i.e., the removed part from the skull).

2.1 Skull Segmentation

The skull bone was segmented from each head CT using a fixed threshold. The
lower threshold is chosen empirically to be 150 Hounsfield Units (HU) for all
skulls and the upper threshold is the maximum density of each CT scan. The
operation results in binary voxel grid (also in NRRD format) containing the
complete bony surface of the skulls.

2.2 Denoising

As the head holder of the CT machine has also high density in CT images, the
aforementioned thresholding operation will also preserve the head holders, which
are irrelevant components for the cranial implant design task. Thus, we removed
the head holders from the binary files automatically using a 3D connected com-
ponent analysis, given that the skulls are the largest component.
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2.3 Defect Injection

An artificial defect was injected into each of the 200 complete skulls. The arti-
ficial defects resemble real defects from craniotomy (e.g., brain tumor surgery),
according to a craniotomy dataset [1]. Figure 2 (right) shows a defective skull
from craniotomy and the corresponding cranial implant designed by experts. We
can see a small roundish drilling hole in one corner of the defect, which is caused
by a craniotome. The craniotome is a tool used by neurosurgeons to open the
skull of the patient. The artificial defect, as can be seen from Fig. 2 (left), also
has such roundish corners. The dataset is then split into a training set contain-
ing 100 complete skulls and the associated defective skulls, and the implant, and
the remaining skulls form the test set, which is referred to as test set (100). The
defects in the training set and test set (100) are similar in terms of the position
and shape, as shown in Fig. 2 (left). However, considering that in craniotomy,
the shape and position of the defect can be different for different patients based
on their individual conditions, e.g. the location of the brain tumor, we created
test set (10), which has varied defects, as can be seen in Fig. 2 (middle). The
test set (10) are created by randomly selecting 10 complete skulls from test set
(100) and injecting varied defects into the selected skulls.

Fig. 2. From left to right: The artificial defect used in the training set and test set
(100), the defects used in test set (10) and an illustration of a real skull defect from
craniotomy. The second row shows the corresponding ‘implanted’ skulls. The implants
are shown in yellow. The rightmost implant for the real case has been manually designed
by an expert. (Color figure online)

3 Quantitative Dataset Parameters

In this section, we show the quantitative parameters of the challenge dataset.
Table 1 shows the maximum (top), minimum (middle) and average number (bot-
tom) of axial slices (n− slice) as well as the voxel occupancy rate (VOR) of
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the training set, test set (100) and test set (10). The VOR is defined as the
percentage of occupied voxels in the whole image volume:

VOR =
∑

V
N

(1)

where
∑

V represents the number of occupied voxels the image volume V and
N = 512 × 512 × Z is the total number of voxel grids in the volume. The
distribution of these parameters is given in Fig. 3. We can see that the maximum
VOR for the complete skull is no greater than 10%. It shows that, unlike other
medical images, which are usually dense, the images in our dataset are of sparse
nature, i.e., the skulls are hollow and the skull surfaces are distributed sparsely
across the image volumes. Another characteristic is that the skull data is binary,
containing only 1 (voxel belonging to the skull surface) and 0 (background).

Table 1. Statistics of the challenge dataset.

Training set Test set (100) Test set (10)

n – slice 394 331 288

211 151 218

255.7 254.24 240.1

skull VOR (%) 9.81 9.15 7.79

3.64 3.73 4.79

5.99 5.96 5.79

Fig. 3. Boxplot of the n − slice and VOR in the training set, test set (100) and test
set (10).

Another important parameter of the dataset is the defect variation, which
is represented by the position and size of the bounding box of the defect. The
bounding box is a rectangular box that tightly encloses the defected region on
the skull. The defect variation comes from two aspects: position variation, which
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can be defined as the starting point coordinates (x, y, z) of the bounding box
and size variation, which can be defined as the size of the bounding box in x-, y-
and z-direction in the 512 × 512 × Z volume. Figure 4 shows the position (first
row) and size (second row) variation of the training set, test set (100) and test
set (10). The shape variation of the defect comes mainly from the skull itself, as
each individual skull has a unique shape.

Fig. 4. Defect variations for the training set, the regular 100 test cases (middle) and
the additional 10 test cases (right). First row: position variation. Second row: size
variation.

4 Conclusion

The aforementioned skull data can be used for two other purposes, in addition
to serving as the challenge dataset [2]. First, to develop automated, data-driven
solutions for cranial implant design [3,4]. In clinical practice, the cranial implant
is designed by experts according to a defective skull using commercial software.
Second, to serve as a benchmark for volumetric shape learning tasks such as
volumetric shape completion. Currently, most shape completion related papers,
such as A. Dai et al. [5] and X. Han et al. [6], use ShapeNet [7] as a benchmark.
ShapeNet contains various objects such as chairs, cars and airplanes in 3D point
clouds representation. To use the dataset for shape completion, the point clouds
needs to be voxelized and the resulting voxel girds are of low dimension e.g., 323.
In contrast, the skulls in our dataset are high dimensional (512 × 512 × Z) and
can be used as a new benchmark for high-resolution volumetric shape completion
tasks. Besides the cranium, skull shape completion can also be extended to the
facial area.
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Abstract. We present an automated method for extrapolating missing
regions in label data of the skull in an anatomically plausible manner.
The ultimate goal is to design patient-specific cranial implants for cor-
recting large, arbitrarily shaped defects of the skull that can, for example,
result from trauma of the head.

Our approach utilizes a 3D statistical shape model (SSM) of the skull
and a 2D generative adversarial network (GAN) that is trained in an
unsupervised fashion from samples of healthy patients alone. By fitting
the SSM to given input labels containing the skull defect, a first approx-
imation of the healthy state of the patient is obtained. The GAN is
then applied to further correct and smooth the output of the SSM in
an anatomically plausible manner. Finally, the defect region is extracted
using morphological operations and subtraction between the extrapo-
lated healthy state of the patient and the defective input labels.

The method is trained and evaluated based on data from the MIC-
CAI 2020 AutoImplant challenge. It produces state-of-the art results on
regularly shaped cut-outs that were present in the training and testing
data of the challenge. Furthermore, due to unsupervised nature of the
approach, the method generalizes well to previously unseen defects of
varying shapes that were only present in the hidden test dataset.

Keywords: Cranioplasty · Cranial implant design · Skull
reconstruction · Statistical shape model (SSM) · Generative adversarial
network (GAN) · AutoImplant · Grand Challenge
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1 Introduction

This work was created as part of the MICCAI Grand Challenge “AutoImplant”1.
The goal of this challenge is the comparison of different approaches for designing
patient-specific cranial implants to cover large bone defects of the cranial bone.
As mentioned by Li et al. [1] in the challenge baseline paper, there is a significant
need to move, typically costly and third-party, cranial reconstruction to the
Operating Room (OR) - not only from a cost reduction perspective, but also
as it might also promote a better fit with the patient, as defects may change
over the waiting period due to ossification or osteolysis at the defect edges.
Following this, special focus is given to automation and time constraints of the
proposed approach in order to facilitate in-OR design and manufacturing, whilst
still providing useful results. Fuessinger et al. [2] presented a similar, but only
semi-automated, approach to cranial reconstruction using a SSM combined with
geometric morphometrics postprocessing, in which manually placed landmarks
constrain the possible transformations of the SSM.

Generative adversarial networks (GANs) are a relatively new approach based
on adversarial training between two networks [3] known as a generator and a
discriminator. The first one is in charge of generating new samples from random
noise and the second one tries to discriminate which comes from the real dataset
and which one comes from the generator. Kazeminia et al. [4] reviewed current
efforts being done in applying GANs in medical imaging, noting their good
results in data reconstruction. Although GANs could follow supervised learning,
unsupervised learning has also shown promising results in many tasks such as
brain lesion segmentation [5] or retina pathology detection [6]. Moreover, GANs
produce interesting results for denoising applications [7], which further promotes
them as an important resource for post-processing results.

In the work presented here, we adopt an approach for the reconstruction of
large bone defects of the pelvic bones used in [8], in which a healthy SSM of the
pelvis is employed to predict the healthy shape of the acetabulum after severe
pathological change. The user initially provides a mask of the pathological area
that is to be ignored during SSM fitting and then by adjusting the SSM to
the remaining healthy parts, the model interpolates a likely shape of the bone
before the defect. We extend the original SSM approach with an automatic step,
thus removing the need for initial user input and automating the entire process.
These results are then further improved upon by processing them through a
unsupervised GAN trained on skull data.

2 Materials and Methods

2.1 Skull Defect Data

The data provided by the Grand Challenge is split into 100 training and 110
test data sets. Each data set comes as a stack of transversal image slices with

1 https://autoimplant.grand-challenge.org/.

https://autoimplant.grand-challenge.org/
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a pixel spacing of approx. 0.5 mm and a slice distance of 0.625 mm. The image
data comes in binary format, where foreground voxels represent the skull bone
generated from high-resolution CT scans based on a threshold segmentation.

The training set comes separated into three image stacks (see Fig. 1): (1)
the full skull without a defect, (2) the skull with an artificially generated defect
(defect image), and (3) the isolated defect itself. The defect is fully or partially
located on the parietal bone (back of the skull) and has a rectangular shape with
straight cuts on the edges. The corners sometimes show round holes.

Fig. 1. Volume rendering of a typical training data set case (id 012). The field of view
shows the full skull (grey) and parts of maxilla and mandible. The defect (blue) is
provided as a separate label. (Color figure online)

The test set is provided with only the defect images. The first 100 data sets
show defects similar to the training data. Whereas the defects of the remaining
ten cases vary in position and shape (see Fig. 2).

Fig. 2. Three out of ten additional test cases with varying defects (from left to right:
id 103, id 100, id 102).

2.2 Statistical Shape Model of the Human Skull

We generated a statistical shape model (SSM) of the human skull consisting
of two surface layers: one surface is representing the outer cortical shell of the
skull including the temporal, occipital, frontal, sphenoid, and parietal bones. The
second surface represents the dura that is lying directly underneath the inner
cortical shell of the skull bones. The SSM surface contains of 27, 500 vertices and
54, 000 triangles.
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Our model was generated by automatically fitting an existing SSM of the
skull that has the same properties as described above. This model was the result
of a previous project that was done in cooperation with the University Medi-
cal Center Regensburg. For this earlier work, a skull SSM was generated by a
semi-automatic method (described in [9]), where training surfaces are manually
decomposed into so called patches, i.e. corresponding anatomical regions with
the topology of a disc. This previous SSM contained 18 training data sets only.

In order to avoid the manual effort required for the SSM generation, we estab-
lished point correspondence over the challenge training data sets by adjusting
this previous SSM to the input images (complete skulls). The method used for
this fitting is similar to the SSM fit described in the subsequent sections, but
only using steps 1 and 2 as there is no defect region that we need to reconstruct.

Performing principal component analysis (PCA) on the resulting surfaces
yielded a new SSM represented by its mean (see Fig. 3a) and its principal modes
of shape variation (see Fig. 3b). The shape generation and representation is based
on the methodology presented in [9]. The SSM trained for this work is purely
based on the 100 training data sets provided by the Grand Challenge and no
additional data sets were used.

Mean SSM First modes of principal shape variation

Fig. 3. The SSM of the skull generated from the provided training data.

2.3 GAN for Correcting Local Defects

To remove smaller, localized defects in label volumes of the skull, we introduce
an unsupervised approach based on generative adversarial networks (GANs).
The proposed networks are trained on individual 2D slices of healthy skull vol-
umes (without defects) such that the generator component of the GAN produces
anatomically-plausible 2D labels given defective 2D input.

Architecture. The GAN architecture (Fig. 4) is largely inspired by previous
work such as adversarial autoencoders [10], DCGAN [11] and GANomaly [12].
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Fig. 4. Proposed GAN architecture with generator G, encoder E, and discriminator
D. The generator itself is an autoenconder with encoder component (GE) and decoder
component (GD).

The generator G is an autoencoder network composed of encoder (GE) and
decoder (GD) networks. GE transforms a 2D slice xi into a lower-dimensional
latent space vector zi of size 512. GD reconstructs the input xi from the latent
space vector zi, generating an estimate of the input x̂i. The global encoder com-
ponent E in turn transforms the generated slice x̂i back into a lower-dimensional
latent space ẑi while enforcing consistency between zi and ẑi in the loss function.
Finally, the discriminator component D identifies an input slice of xi and x̂i as
real or fake respectively for adversarial training.

Loss Functions. The generator loss consists of an adversarial loss, reconstruc-
tion loss and latent space consistency loss:

LG = Ladv + Lrec + Llsc (1)

The adversarial loss Ladv is based on feature matching which has shown to
reduce the instability of GAN training [13]. It is defined as Ladv = ||f(D(xi) −
f(D(G(xi))||2 and measures the similarity between an intermediate layer of D of
input xi and prediction x̂i. The reconstruction loss Lrec is given by the L1 metric
which has demonstrated to produce less blurry results than L2 [14]. Finally, the
latent space consistency loss Llsc aims at minimizing the distance between the
two latent spaces zi and ẑi [12], and is defined as Llsc = ||GE(xi)−E(G(xi))||2.

The discriminator loss it is given by the binary cross-entropy loss for a clas-
sification problem between the input xi and prediction x̂i:

LD = Exi
[log D(xi)] + Ex̂i

[log(1 − D(G(xi))] (2)

Training. The networks were trained simultaneously on 56, 320 transverse 2D
slices, extracted from the label volumes that showed the full skull without defects
in the training data set. 5% of the slices were selected for validation purposes.
To match the input resolution of the GAN, the slices were sub-sampled to a
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resolution of 256× 256, and randomly combined into batches of 64 images. The
weights were optimized using Adam [15] over 328 epochs (learning rate: 1e−5,
β1: 0.5, β2: 0.999), at which point the reconstruction loss showed convergence
for both the training and validation data.

2.4 Algorithm for Virtual Reconstruction of Skull Defects

Our algorithm can be divided into the following steps depicted in Fig. 5. Each
step is described in more detail below.

Fig. 5. Overview of the reconstruction pipeline. Steps 2 and 3 are based on adjusting
the SSM, whereas step 4 is based on an unsupervised GAN.

Estimation of Skull Pose. As the subsequent SSM-based reconstruction steps
require a local initialisation of the shape model within the image data, we per-
form a pose estimation of the skull. We employ an extension of the generalized
Hough transform (GHT) for localisation of 3D shapes as used in [16]. The mean
model of the SSM serves as a shape template that is matched with the input
image gradients. The pose and scale variation that yields the best match of image
gradients and surface normals is considered the initial pose and size of the skull
SSM for further matching.

Defect Localisation. The first SSM-adaptation step aims at identifying the
defect region, i.e. the parts of the defect skull that are bounding the hole. This is
required as the SSM is mainly driven by image features that are sampled along
surface normals, resulting in a tendency of the model to get pulled inside the
defect area (see Fig. 6a).

To localize the defect, we apply a simple gradient-driven adaptation of the
SSM similar to the approach presented in [16]. After finding the parameter set of
the SSM (pose, size, shape) that best resembles the instance in the defect image
a second deformation step is performed. This second step is used to overcome one
limitation of SSMs: new shapes that are not well covered by the SSM training
population, cannot be described exactly by the SSM. For this step a graph-cut
based regularisation scheme is applied.

After the SSM is fitted to the defect image, the resulting enclosed volume
between inner and outer shell is converted to foreground voxels. Subtracting the
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No defect mask Defect mask

Fig. 6. The SSM will be dragged inside the defect region if image features are detected
inside the hole area (a). When the approx. defect area is known by a mask, profiles in
its vicinity can be ignored during the fitting (b).

defect image from the reconstructed volume yields an image that contains the
defect plus a lot of small disconnected components in the upper part of the skull
and larger disconnected components in the base of the skull (see Fig. 7a). To
extract the defect from this subtraction image, a morphological opening opera-
tion is used to remove small components and artefacts attached to the boundary
of the defect. Finally, the initial defect is extracted as a single large component
(voxel count >50, 000) that has the largest z-coordinate.

Before filtering After filtering

Fig. 7. Defect extraction after SSM fitting. Subtracting the defect skull from the seg-
mentation leads to a lot of small and large connected components (a). After perform-
ing a morphological opening and component size filtering, only one large component
remains at the top of the skull.

Defect Reconstruction. The actual SSM-based defect reconstruction is a rep-
etition of the previous ‘defect localisation’ step with one change: to prevent the
SSM from being pulled inside the defect zone, the initial defect from the pre-
vious step is used to generate a mask which defines the defect boundary (see
Fig. 6b). Any normal profile that passes through this area will be ignored during
the fitting process. The extracted defect fits better to the boundary of the defect
and shows an overall smoother extrapolation.
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However, as the small area at the vicinity of the defect is ignored small
imperfections still remain, especially in the transition area, e.g. small discon-
tinuities between native and reconstructed bone. To this end, the SSM-based
defect reconstruction is passed on to an unsupervised GAN for post-processing.

Defect Refinement. The idea behind the refinement step is to further correct
and smooth the reconstructed defect region by applying the generator network
of the 2D GAN introduced in the previous sections. For this purpose, we first
combine (logical OR) the binary labels from the SSM-based defect reconstruc-
tion and the input defect skull (without the defect) label volume. 2D slices
are then extracted in transversal plane from the merged volumes, converted to
floating-valued grey-channel images, and fed slice-by-slice to the generator (see
also Fig. 4). The output images are re-combined into label volumes and thresh-
olded to obtain a label prediction of the skull without defect. We found that a
threshold in the first quantile of the output distribution of the generator works
best for the given application. Finally, the subtraction and opening operations
from the previous step are repeated to filter for the defect region and to obtain
the virtual reconstruction outcome.

3 Experiments and Results

Experiments on Training Data. For a first internal evaluation of our
pipeline, based on the training data we performed a test run and measured
the dice score (DSC) and relative volume difference (VD). As the SSM was gen-
erated from the training data, all experiments were executed in a leave-one-out
fashion, i.e. the respective training data set to be reconstructed got removed
from the SSM.

The average scores of DSC and VD of the training set results are given in
Table 1. With the ground truth defect (GTD) and the reconstructed defect (RD)
as input the VD is defined as (VGTD − VRD)/VRD. A value of zero stands for
equal volume sizes while a negative value indicates over estimation of the defect
size and vice versa. DSC is also visualized in a box-plot for every subsequent
step of the pipeline (see Fig. 8a).

Color coding the surface distance from ground truth implant to the recon-
struction does not reveal any specific region of the defect where deviations typ-
ically occur (see Fig. 8b). A visual impression of different reconstruction results
is given in Fig. 9.

Table 1. Scores on training data.

Localisation Reconstruction Refinement

mean DSC (stdev) 0.889 (0.039) 0.909 (0.033) 0.913 (0.032)

mean VD 0.078 0.027 −0.02
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Dice score on training cases
Surface distance on selected train-
ing cases

Fig. 8. (a) Training case results for single pipeline step. (b) Implant ground truth for
training cases (from upper left to lower right 000, 020, 025, 041, 099) with color map of
measured surface distance to the reconstruction displayed in red. (Color figure online)

Fig. 9. Different training set reconstructions in terms of DSC (green: ground truth,
red line: SSM; blue line: GAN): the worst DSC result also shows a strong mismatch in
the middle part of the defect. (Color figure online)

Close to the transition area between native and virtually reconstructed bone,
the GAN result shows an improvement in terms of continuity (see Fig. 10).

Experiments on Testing Data. We also tested our pipeline on a second test
data set for which no ground truth was given. None of this data was used in
any way for training the SSM or GAN. Therefore, a leave-one-out strategy was
neither needed nor applied here. The results calculated by the organisers of this
challenge are summarized in Table 2 and also the variation of all 110 cases is
visualized with box plots in Fig. 11.
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Fig. 10. Examples of results obtained from the SSM and subsequent GAN step: The
GAN results show a better transition to the remaining bone close to the defect bound-
ary (green arrows). Further away from the defect boundary stronger deviations between
SSM and GAN results can be observed (yellow arrows). (Color figure online)

Table 2. Scores on testing data.

Test case (100) Test case (10) Overall (110)

mean DSC 0.917 0.919 0.917

mean HD 4.336 3.987 4.304

Dice score on 110 test cases HD score on 110 test cases

Fig. 11. (a) DSC box-plot of all 110 training cases for final SSM fit (defect reconstruc-
tion) and GAN (defect refinement). (b) HD (mm) score box-plot of all 110 training
cases for final SSM fit (defect reconstruction) and GAN (defect refinement).

Runtime. For the experiments, we used a workstation equipped with a 2.30 GHz
Intel Core i5 processor, as well as server hardware with two Intel Xeon CPUs
and four NVIDIA Quadro RTX 6000 GPUs. SSM-based reconstruction on the
workstation took between 7 to 12 min per case, including both SSM fitting stages.
The GAN-based inference step needed two minutes per case, utilizing the GPU
hardware on the server.
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4 Discussion and Conclusion

We introduced an automatic pipeline for virtual reconstruction of large defects
of the upper skull. A low standard deviation in the Dice and Hausdorff scores
indicate that our approach is robust in a sense that the resulting implant shows
a strong overlap with the original healthy bone for all subjects. Compared to the
baseline approach [1] (reported scores on network N2: DSC: 0.8555, HD: 5.1825),
our method shows an improvement (DSC: 0.917, HD: 4.336).

Applying our GAN approach to the SSM-based defect slightly improves the
Dice score. This behaviour can be especially observed in the transition from
native bone to virtually reconstructed defect (see Fig. 10). As our GAN is only
trained on a single slice direction, we expect it to show further improvement if
a multi-slice or even 3D approach is used.

On test cases with different characteristic, our method achieves equally good
results as on the ‘training-like’ cases. This makes it a suitable approach to fix
large defects of arbitrary shape on the top and back of the skull bone. A visual
inspection of the surface distances on the training data revealed that the areas
of largest deviations are arbitrary, i.e. there is no typical location where our app-
roach shows the largest error. This is an indicator that the local anatomical vari-
ations inside such large defects are only weakly correlated with the surrounding
healthy bone. This could pose a natural boundary for any method that heavily
relies on statistical shape knowledge.

For the clinical application of such an approach it is important to consider two
additional requirements in the future: First, it might be beneficial if the implant
is minimally smaller at the edges (e.g. 0.3 mm) to allow for an easy insertion into
the defect. Second, due to thick scarring, which can be seen intraoperatively, it
may be better to manufacture the implant much thinner (e.g. only 5 mm thick).
As our approach allows differentiation between the defect rim, inner cortical and
outer cortical shell, adapting the method to fulfill those constraints is straight
forward, e.g. by localized morphological operations.

One of the main motivation of this challenge was to propose a method that
could potentially be used to create an implant intraoperatively. Our approach can
produce a proposal for an implant in a few minutes. Together with the accuracy
and reliability of our method, we consider this requirement to be fulfilled.
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Abstract. Cranial implant design can be thought as a 3D shape completion task
predicting the missing part of a defective cranium, which is a time-consuming task
in traditional methods. This paper proposes a deep convolutional neural network
(CNN) based method which predicts the implant from a binary voxel image of a
defective skull. Three networks with the same structure are trained for inpainting
sagittal, coronal, and horizontal slices of the defective skull, respectively. After
skull size regularization and slice extraction, inpainting results from one or more
axes are used to synthesize the final binary implant voxel image. Cross-validation
shows that the proposed method has a good performance in the cranial implant
design task in terms of both Dice similarity coefficient (DSC) and Hausdorff
distance (HD).

Keywords: Cranial implant design · Shape completion · Deep learning

1 Introduction

Cranial defects can be caused by trauma or brain tumors. To recover the function of the
cranium and considering aesthetic factors, the implant shouldmake the repaired cranium
as similar as possible to the original undamaged one. Under these demands, the cranial
implant design task can be thought as a 3D shape completion task on incomplete binary
cranial voxel images.

DedicatedCADsoftware and sophisticated procedures are commonly used inmanual
patient-specific implants design methods [1–4], while statistical shape models (SSMs)
[5] and volumetric deep convolutional neural networks (3D-CNN) [6, 7] provide fully
or semi-automatic solutions to this problem. However, limited by the memory capacity
of the graphics cards, the resolution of 3D-CNN is low, and the network cannot be very
deep. Besides, there is also an online platform dedicated for this task [8]. Other 3D
shape completion methods are commonly based on point clouds [9, 10], signed distance
functions (SDF) [11] and depth images [12], but few of them have been applied to this
task.
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One commonly used cranial implant design method utilizes the symmetry of the
skull, which mirrors the defective cranium across the sagittal symmetric plane and uses
Boolean operation to get the implant [1, 4, 14]. However, this method cannot output
the complete implant if the defect crosses the symmetry plane and dislocations will
sometimes be found around the junction, since human craniums are not fully symmetric.

2 Methodology

The proposed method generates implants by synthesizing slice inpainting results from
different axes together with some simple preprocessing and postprocessing. To be spe-
cific, the skull region of an input voxel image containing a defective cranium is first
enlarged to the same dimension. Then three 2D-CNN with the same structure are used
to predict implants from defective slices taken from three different axes, respectively.
Next, by synthesizing these inpainting results from one or more axes, an enlarged cra-
nial implant is obtained. Finally, after a shrinking operation which inverses the enlarging
operation, the final cranial implant is gained (Fig. 1).

CNN

CNN

CNN

Slice
Extraction

Image Shape 
Regularization +

Synthesis

Inverse 
Image Shape 

Regularization

X

Y

Z

Fig. 1. The overall workflow of the proposed methods.

2.1 Dataset

The dataset was taken from theAutoImplant Challenge [15], which contains one training
set with 100 cases and one testing set with 110 cases. Each case in the training set has
three binary voxel images of the complete and defective cranium and its corresponding
implant, one for each, while only images of defective cranium are provided for cases in
the testing set. 200 defective images have the similar type of defects, which are called
“normal defects” in this paper and the rest 10 have more complex defects, which are
called “abnormal defects”.

2.2 Preprocessing

Image Shape Regularization. The binary voxel images in the datasets represent the
segmented cranium with 1 and others with 0. And the bounding box of a voxel image is
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the smallest cuboid regionwhich is parallel to the coordinate axes and encloses all voxels
with value 1. The skull region of an image is the bounding box of it plus some margins
to ensure that the predicted implant can fall into the skull region completely in case
the image contains a defective cranium and necessary. The image shape regularization
proposed in this paper means resizing the skull region of different images to the same
dimension. In order to make slices from different axes to have the same dimension, the
regularized dimension was chosen to be 512 × 512 × 512.

Slice Extraction. This paper denotes the three coordinate axes of the voxel image by
X, Y and Z axis. In the proposed method, slice extraction is performed on each voxel
image after image shape regularization from X, Y and Z axis respectively and the results
are stored into three parts, one for each axis.

2.3 Slice Inpainting

A deep learning network is proposed to predict an implant image from a defective skull
slice and data augmentation is used during training to ease overfitting.

Network Structure. The proposed network structure is illustrated in Fig. 2 and Fig. 3
and it is essentially a convolutional neural network (CNN) of the denoising autoencoder
(DAE) structure with an additional auxiliary path and the channel attention mechanism.
The input andoutput of the network are both single channel images of the samedimension
512 × 512 but with different value ranges. The input image is binary skull slice with
values 0 and 1, while each pixel in the output image has a value range from 0 to 1 and
larger value means higher certainty for that pixel to be in the implant. This type of image
is called probability image in this paper.

ConvBlockS
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Fig. 2. Overall structure of the proposed network. Red parallelogram denotes input defective
image. Green parallelogram denotes output implant image. Texts next to the arrows denote the
operation blocks used in the dataflow. (Color figure online)
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Fig. 3. Operation blocks’ definition. “C” denotes the number of channels, “K” denotes the kernel
size used in the convolution layers (same value for x and y dimensions), and “S” denotes the
strides of convolution operation (same value for x and y dimensions).

Data Augmentation. The proposed data augmentation methods are based on statistical
analysis of the shape of all the implant and defective cranium images in the dataset, which
is trying to generate fake defective skull slices from complete skull slices. Taking the
X axis for example, the proposed statistical analysis is simply calculating the bounding
boxes of the implant regions in each implant slice from the X axis together with the
varying ranges of some basic geometric properties of these bounding boxes, including
their width, height and four boundary positions. In the training phase, a fake defective
skull slice is obtained by masking out a randomly generated rectangle region (mask) of
a real complete skull slice and the corresponding implant image is obtained by Boolean
difference operation on them. Data augmentation schemes in this paper mean different
strategies to generate the mask and they vary with different axes and different types of
defects.As shown inFig. 4 andFig. 5, there are two sets ofmasks for normal and abnormal
defects, respectively. For the normal defects, different data augmentation schemes are
used for different axes and these masks are trying to generate defective slices similar
to those in the original dataset, thus their sizes and positions are constrained by the
aforementioned geometric properties. For the abnormal defects, different axes use the
same three schemes, whose masks’ sizes and positions vary in a wider range than the
normal defects’ masks to enhance the inpainting capacity.

Training. The proposed networks are trained on a computer with one GTX 1080 graph-
ics card and one GTX 960 graphics card and the batch size was set to be 8. The loss func-
tion is chosen to be dice loss [13] and four optimizer and learning rate pairs are used four
training, which are Adam@0.0005, Adam@0.0002, SGD@0.0001 and SGD@0.00005.
These pairs are used successively, and parameter weights are saved after every epoch.
Starting with Adam@0.0005, when the validation loss start to ascent and three tolerance
epochs have passed, parameter weights with the lowest validation loss are reloaded and
the next pair is used to repeat the aforementioned process until the last pair is used or
the validation loss cannot descent anymore.
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Fig. 4. Typical defective images of normal defects of different axes and their corresponding data
augmentation masks. In the mask generation process, if a mask boundary is anchored to an image
boundary in the figure, that mask boundary is fixed to that image boundary. If a mask boundary is
constrained by a length range, the true position of that mask boundary is determined by randomly
choose a length in the length range. If a mask boundary is unconstrained, then its true position is
guaranteed to let the mask cut through the skull completely.
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Fig. 5. Data augmentation masks for abnormal defects. Three mask types (A, B and C) are used
for all X, Y and Z axis.

2.4 Synthesis

By stacking the predicted implant slices of one axis together in the original order, an
implant voxel probability image is obtained, whose value of each voxel ranges from 0 to
1. Then, these voxel images from different axes are combined to form a multi-channel
voxel image and the binary version of it is calculated by the following strategy: For each
voxel, if the sum of all the channels is greater than half of the channel number, then its
final value is 1, otherwise the value is 0. In the other words, let P(1), P(2), P(3) denote the
stacked voxel probability image from different axes, the predicted implant voxel image
P is determined by the following equations.

• If three axes are used for prediction:

P =
{
1, P(1)+P(2)+P(3)

3 ≥ 1
2

0, others
(1)
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• If two axes are used for prediction:

P =
{
1, P(1)+P(2)

2 ≥ 1
2

0, others
(2)

• If only one axis is used for prediction:

P =
{
1, P(1) ≥ 1

2
0, others

(3)

Then, after a simple resize transformation which inverses the image shape regular-
ization process mentioned in the preprocessing part, the final implant voxel image is
obtained.

3 Results

Cross-validation shows that the synthesized results from the combination ofX andY axis
have the lowest mean Hausdorff distance (HD) among all the different combinations,
with only slightly lower Dice similarity coefficient (DSC) than the combination of X, Y
andZaxis.Besides, the defective slices ofZ axis of abnormal defects are too sophisticated
and are hard to generate through a simple rectangle mask. Thus, the submitted implant
images are all synthesized fromXandYaxis, but different versions of network parameter
weights are still used in the inpainting of slices from normal and abnormal defects
separately. Note that the networks for inpainting normal and abnormal defects have the
same network structure and the only difference is in the training phase, where different
data augmentation schemes are used for them, respectively. For those defective skull
images which have non-straight cutting edges, extra processes must be done for the
network to work properly, such as manually enlarging the defective region to make the
cutting edge straight and using Boolean operations to erase the overlapping part.

X

Y

Z

Fig. 6. Plots of 2D slice inpainting results from three axes. From left to right: the input defective
skull slices; the ground truth implant slices; the predicted probability implant slices; the absolute-
valued difference between the prediction and ground truth.



34 H. Shi and X. Chen

Figure 6 demonstrates the slice inpainting results of different axes and Fig. 7 demon-
strates the visual difference of the synthesized results of different axes combinations.
The evaluation results of the 110 testing cases is shown in Table 1 and Fig. 8.

X Y Z XY

XZ YZ XYZ GT

Fig. 7. 3D Plots of synthesized results of different axes’ combinations. Streak artifacts caused by
slice-wise inpainting can be seen most obviously from single axis’ results (X, Y, Z) and the outer
surface of three axes’ result (XYZ) is smoothest visually.

Table 1. The quantitative results of the 110 testing cases (100 with normal defects and 10 with
abnormal defects)

Test case (100) Test case (10) Overall (110)

Mean DSC
(%)

93.07 92.38 93.06

Mean HD
(mm)

3.66 4.09 3.70

Fig. 8. Boxplot of the quantitative results of the 110 testing cases.
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4 Conclusion

This paper proposed a novel cranial implant design method which can predicte the 3D
implant from inpainting 2D slices of different axes. The main part of the proposed
method, which was responsible for generating the implant, were fully automated, hence
it might be useful in reducing the workload of cranial implant designers.
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Abstract. Cranial implant design is a challenging task, whose accu-
racy is crucial in the context of cranioplasty procedures. This task is
usually performed manually by experts using computer-assisted design
software. In this work, we propose and evaluate alternative automatic
deep learning models for cranial implant reconstruction from CT images.
The models are trained and evaluated using the database released by
the AutoImplant challenge, and compared to a baseline implemented
by the organizers. We employ a simulated virtual craniectomy to train
our models using complete skulls, and compare two different approaches
trained with this procedure. The first one is a direct estimation method
based on the UNet architecture. The second method incorporates shape
priors to increase the robustness when dealing with out-of-distribution
implant shapes. Our direct estimation method outperforms the baselines
provided by the organizers, while the model with shape priors shows
superior performance when dealing with out-of-distribution cases. Over-
all, our methods show promising results in the difficult task of cranial
implant design.

Keywords: Skull reconstruction · Self-supervised learning ·
Decompressive craniectomy · Shape priors

1 Introduction

Crainoplasty is a surgical procedure aimed at repairing a skull vault defect by
insertion of a bone or nonbiological implant (e.g. metal or plastic) [1]. Such skull
defect may exist due to different reasons, like a brain tumor removal procedure
or a decompressive craniectomy surgery following a traumatic brain injury [12].
Cranial implant design is usually performed by experts using computer-aided
design software specifically tailored for this task [2]. The AutoImplant challenge,
organized for the first time at MICCAI 2020, aims at bench-marking the latest
developments in computational methods for cranial implant reconstruction. In
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this work, we propose and evaluate two approaches to solve this task using deep
learning models.

Previous works on skull and cranial implant reconstruction suggest that deep
learning models are good candidates to solve this task. In [13] a denoising autoen-
coder was used to perform skull reconstruction, following an approach similar to
the recently proposed Post-DAE method [6,7]. In this case, a denoising autoen-
coder is trained to reconstruct full skulls from corrupted versions. However,
the model proposed in [13] works with skulls extracted from magnetic reso-
nance images, can only handle low resolution images and was evaluated on the
full-skull reconstruction task. Here we focus on reconstructing the flap only,
on skulls extracted from high resolution and anisotropic computed tomography
(CT) images. Other approaches rely on a head symmetry assumption and pro-
pose to take advantage of it to reconstruct the missing parts by mirroring the
complete side of the skull [4]. However, this is not a realistic assumption since
missing flaps may occur in both sides simultaneously. Another alternative could
be the subtraction of the aligned pre- and post-operative CT scans. Unfortu-
nately, this requires to have access to the pre-operative image, which may not
be the case in real clinical scenarios.

Recently, we have proposed [11] a simple virtual craniectomy procedure
which enables training different deep learning models in a self-supervised way,
given a dataset composed of full skulls. In this work, we compared two different
approaches: direct estimation of the implant, or reconstruct-and-subtract (RS)
strategies where the full skull is first reconstructed, and then the original image
is subtracted from it to generate a difference map. We evaluated different archi-
tectures and concluded that direct estimation produces more accurate estimates
than RS strategies, since the latter one tends to generate noise in areas far from
the flap. A different approach has been introduced by the AutoImplant challenge
organizers [9] which also employs deep learning models, but it works in two steps.
First, a low resolution version of the image is reconstructed to localize the area
where the defected region is located. Then, they extract a 3D patch from the
high resolution image and process it using a second neural network trained for
fine implant prediction.

In this work, based on the conclusions from [11], we employ a direct estima-
tion method that operates on full skulls which are rigidly registered to an atlas
and resampled to an intermediate resolution. Aligning the images allow us to
work in a common space which simplifies the reconstruction task. We adapt the
virtual craniectomy procedure to account for more realistic flap shapes, similar
to the ones introduced in the AutoImplant challenge. Moreover, we propose to
incorporate anatomical priors into the standard direct estimation model intro-
duced in [11] by feeding the registered skull atlas as an extra image channel.
Previous works [8] have shown that incorporating approximate shape priors as
additional image channels is a simple yet effective way to increase the anatom-
ical plausibility of the segmentations, since it provides supplementary context
information to the network. We compare the results of our two methods with
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those obtained by the baseline benchmark model introduced in [9], showing the
superiority of our approach.

Fig. 1. Examples of images from the Dtest set and Dtest−extra (out-of-distribution
cases). As it can be observed, images from Dtest follow a common pattern, while those
in Dtest−extra present different defects with various shapes.

2 Challenge Description and Database

The AutoImplant challenge organizers provided 100 images for training (Dtrain)
and 110 images for testing. From the 110 test images, 100 of them (denoted here
as Dtest) have simulated surgical defects which follow the same distribution as the
ones on the training images, while the remaining 10 (denoted as Dtest−extra) have
defects which do not follow the same distribution (see Fig. 1). The images were
selected from the CQ500 public database1 [3]. They have fixed image dimension
in the axial plane (512× 512) and a variable number of axial slices Z.

The training dataset (Dtrain) is composed of triplets (X full,X defected,Y),
where X full is the full skull, X defected corresponds to the defected skull and
Y to the removed defect that we aim at reconstructing. For the test images,
only the X defected images were released. We evaluated the proposed methods in
1 The database can be accessed at: http://headctstudy.qure.ai/dataset.

http://headctstudy.qure.ai/dataset
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the test images and submitted the results to the organizers, who computed the
metrics reported in this paper. It is important to note that, in order to avoid
overfitting to the test data, we could submit our results a maximum of 5 times.

Fig. 2. Modified virtual craniectomy procedure. We incorporated new template shapes
for the virtual craniectomy to account for the pattern found in the AutoImplant chal-
lenge dataset.

3 Methods

The proposed cranial implant reconstruction methods operate on the space of
binary volumetric masks. Such binary skull can be obtained by simply thresh-
olding a brain CT image according to the Hounsfield scale, or applying more
sophisticated methods. In the AutoImplant challenge, the skulls were already
provided as binary volumes, extracted from the CT images using thresholding
and additional post-processing steps (for further details we refer to [9]). Since
the training data includes the full skulls, we leveraged the virtual craniectomy
procedure proposed in [11] to train our models.

3.1 Virtual Craniectomy and Data Augmentation

Given a full skull, we designed a virtual craniectomy procedure which consists
in removing a bone flap using a template located in a random position along its
upper part. In [11], spherical template shapes were used. By visual inspection of
the AutoImplant training data, we observed that defects tend to follow a pattern
given by the intersection of the skull with a cube with two cylinders over the edges
perpendicular to the axial planes. So, we designed a variable-size template shape
which produces similar defects, as shown in Fig. 2. To increase the diversity of
our training procedure, we also included spherical and cubic templates of random
sizes (all of the three shapes were selected with equal probability).
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Fig. 3. (a) The images are first registered to an atlas space, and resampled to a common
resolution. We store the resulting transform T and its inverse T −1. (b) We compare
two different approaches for the implant reconstruction task. The first one is a standard
DE-UNet model. The second one incorporates a shape prior by considering the atlas
as an extra input channel to the network. After prediction, the segmentation mask is
mapped-back to the original image space using the inverse transform T −1.

The virtual craniectomy was used as a data augmentation mechanism to gen-
erate a variety of training samples from a limited amount of full skulls, resulting
in a self-supervised learning approach, where no annotated skull defects are
required for training. We also included salt and pepper noise in the input images
with probability 0.01. Moreover, we also considered the defective skulls provided
by the organizers as part of our datasets (in these cases, virtual craniectomy was
not performed). During training, we sampled images coming from both sources:
simulated virtual craniectomies and defective skulls provided by the organizers.

3.2 Common Space Alignment

Before training, all the images were rigidly registered to a common space deter-
mined by a full skull atlas. It consists in a thresholded version of a full-skull head
CT atlas constructed by averaging several healthy head CT images. Such atlas
allowed us to normalize the images by resampling them to an intermediate res-
olution. We chose this resolution to be 0.695× 0.695 × 0.715 mm (resulting in a
volume of 304 × 304 × 224 voxels) because it was the maximum size we managed
to fit in GPU memory. Moreover, aligning the images in a common space simpli-
fies the reconstruction task for the neural network, since it can focus on shape
variations which are more relevant to the reconstruction task than translations
and rotations. We used the FLIRT software package [5] for rigid registration. At
test time, given a test defective image X defected

i , we apply the same registration
procedure which returns a transformation T and its inverse T −1. The transfor-
mation is applied to the original image T ◦ X defected

i . The estimated skull defect
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Fig. 4. Comparison of the results for the proposed methods in terms of Dice and
Hausdorff Distance (HD). HD is shown in log scale for better visualization.

Ŷi is reconstructed in the common space, and the final estimate in the original
space is recovered by applying the inverse transformation T −1 ◦ Ŷi.

3.3 Direct Estimation

Our first method is a direct estimation model which follows the same architecture
as the DE-UNet used in [11]. It is a standard 3D UNet encoder-decoder archi-
tecture with skip connections, trained using a compound loss which combines
Dice and cross-entropy terms [14] (for more details, we refer to our work in [11]).
After reconstruction, the segmentation is re-mapped to the original resolution
using the inverse transform T −1 as previously discussed.

The model is trained using batches with full volume images, pre-aligned in
the common space and resampled to an intermediate resolution as previously
discussed.

3.4 Direct Estimation with Shape Priors

Since the DE-UNet model is a fully convolutional architecture, the receptive field
of the model is mainly determined by the amount of layers and parameters of
the pooling and convolution operations. In other words, the local support of the
output predictions is restricted to a certain area in the input image. When we
have to reconstruct big or out-of-distribution skull defects, it may happen that
most of the image support for certain parts of it are background, so the network
may have no context to infer the implant shape. To overcome this limitation and
make our model robust, we propose to incorporate context via shape priors given
as an extra channel to the segmentation network. Previous works [8] have shown
that this simple extension can boost the robustness of existing state-of-the-art
pixel-wise approaches in medical image segmentation tasks.

We take advantage of the fact that images are co-registered to a common
space, and use the same skull atlas as shape prior. After registration, we con-
catenate the resampled image with the atlas as a extra input channel, and train
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Table 1. Quantitative results obtained for the two proposed methods (DE-UNet and
DE-Shape-UNet) compared with the two baselines reported by the challenge organiz-
ers in [9]. We report the mean Dice and HD values, and the standard deviation in
parentheses.

Method Dtest (100) Dtest−extra (10) Overall

Dice HD (mm) Dice HD (mm) Dice HD (mm)

Baseline N1 [9] 0.809 5.440 – – – –

Baseline N2 [9] 0.855 5.182 – – – –

DE-UNet 0.913 (0.038) 4.067 (1.762) 0.769 (0.126) 8.585 (5.128) 0.900 (0.067) 4.477 (2.626)

DE-Shape-UNet 0.845 (0.107) 6.414 (9.060) 0.816 (0.078) 5.952 (1.258) 0.842 (0.105) 6.372 (8.648)

the network following the same strategy discussed before. In this case, the shape
prior acts as a kind of initialization for the network’s output, providing additional
context that will be useful specially to reconstruct out-of-distribution defects.
We refer to this model as DE-Shape-UNet. Common space alignment and both
approaches are depicted in Fig. 3.

3.5 Implementation Details

The models were implemented in Pyhton, using the PyTorch 1.4 library. We
trained and evaluated the CNNs using an NVIDIA TITAN Xp GPU with 12 GB
of RAM. The same virtual craniectomy and data augmentation procedure was
used to train both models. In both cases we used a compound loss function which
combines Dice loss and Binary Cross Entropy (BCE) as L = LDice + λLBCE

(parameter λ was set to λ = 1 by grid search). Both models followed the DE-
UNet architecture described in [11]; the only difference between them was that
we concatenated the atlas as an extra input channel in the DE-Shape-UNet
model. For optimization, we used Adam with initial learning rate of 1e-4. The
batch-size was set to 1 for memory restrictions. The models were trained for 50
epochs. The 100 training images were split in 95 images for training and 5 for
validation. After 50 epochs, we kept the model that achieved best accuracy in
the validation fold.

4 Results

Figure 4 and Table 1 include a quantitative comparison of the results. We report
Dice coefficient and Hausdorff distance measured in the Dtest (100 images),
Dtest−extra (10 images) and the whole test dataset. We observe that DE-Shape-
UNet presents better performance for out-of-distribution cases (Dtest−extra),
while DE-UNet outperforms the other model in the Dtest set. Since the whole
test dataset is composed of 100 images from Dtest and only 10 images from
Dtest−extra, the DE-UNet model shows better performance in the overall com-
parison. Moreover, DE-UNet model outperforms the two baseline models (N1
and N2) reported by the organizers in [9]. Figure 5 provides some visual exam-
ples for reconstructions obtained with both methods in samples from Dtest and
Dtest−extra.



44 F. Matzkin et al.

Fig. 5. Examples of different reconstructions from Dtest (cases which follow the same
pattern than the training dataset, shown in rows 1 and 2) and Dtest−extra (out-of-
distribution case, shown in row 3). As we can observe, both methods performed well in
the image depicted in row 1. For the case in the 2nd row, even if the DE-Shape-UNet
model managed to reconstruct the implant, the quality of the reconstruction is lower
than that of the DE-UNet. The opposite happened with the image in row 3 (an out-
of-distribution case from Dtest−extra) where the model which incorporated shape priors
managed to reconstruct the implant, while the DE-UNet failed in this task.
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5 Conclusions

In this work, we evaluated two different approaches for cranial implant recon-
struction based on deep learning: a direct estimation method and an alterna-
tive strategy which incorporates shape priors. We adapted the virtual craniec-
tomy procedure proposed in [11] to the defect distribution of the AutoImplant
challenge. We found that the simple DE-UNet method produces more accu-
rate results for the skull defects which follow the same distribution as those in
the training dataset. However, for out-of-distribution cases where the DE-UNet
model tends to fail, the use of shape priors increases the robustness of the model,
providing additional context to the network. In our implementation, this gain in
robustness for out-of-distribution cases was achieved to the detriment of the over-
all accuracy. In future work, we plan to study alternative ways to introduce shape
priors, e.g. considering deformable registration with anatomical constraints [10]
to the atlas space instead of rigid transformations, or incorporating shape priors
in a co-registration and segmentation process [15].
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Abstract. Automatic cranial implant design can save clinicians time
and resources by computing the implant shape and size from a single
image of a defective skull. We aimed to improve upon previously pro-
posed deep learning methods by augmenting the training data set using
transformations that warped the images into different shapes and orien-
tations. The transformations were computed by non-linearly registering
the complete skull images between the 100 subjects in the training data
set. The transformations were then applied to warp each of the defective
and complete skull images so that the shape and orientation resembled
that of a different subject in the training set. One hundred ninety-seven
of the registrations failed, resulting in an augmented training set of 9,803
defective and complete skull image pairs. The augmented training set was
used to train an ensemble of four U-Net models to predict the complete
skull shape from the defective skulls using cross-validation. The ensemble
of models performed very well and predicted the implant shapes with a
mean dice similarity coefficient of 0.942 and a mean Hausdorff distance
of 3.598 mm for all 110 test cases. Our solution ranked first among all
participants of the AutoImplant 2020 challenge. The code for this project
is available at https://github.com/ellisdg/3DUnetCNN.

Keywords: Deep learning · Shape completion · Augmentation

1 Introduction

Automatic cranial implant design can save clinicians time and resources by com-
puting the implant shape and size needed by a specific patient based on com-
puted tomography imaging of their head [5,6,8,11]. The AutoImplant 2020 Cra-
nial Implant Design Challenge seeks to test varying methods for designing an
implant based on an image of a skull with a defect such that part of the skull
is missing [7]. The challenge organizers submitted a baseline solution for this
challenge in which they experimented with two deep learning solutions [10]. The
first solution was to use a cascade style set of models where one model predicts
the implant’s shape at low-resolution, and another model subsequently refines
c© Springer Nature Switzerland AG 2020
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that shape at high-resolution. This cascade style solution has the advantage of
limiting memory use by only computing the high-resolution implant shape on a
cropped image rather than the whole image of the skull. However, the authors
noted that overfitting to the training set caused the model to have two key lim-
itations in its ability to generalize to cases outside of the training set [10]. The
first limitation was that the model tended to predict the same implant shape for
a given skull, even when the location of the defect had been changed. The second
limitation was that the model was not able to accurately predict implants for
defects that were in different locations and differently shaped than the defects
in the training set images. The authors also experimented with using a deep
learning network trained to predict the shape of the skull without defects and
gave illustrations of how the model appeared to generalize well to cases outside
the training set [10].

Inspired by these results, we aimed to implement a deep learning solution
that would perform skull completion while learning from a heavily augmented
training set. Augmentation is a common approach to expand the size of a training
set of data so that a model training on the data will avoid overfitting and will
generalize well to cases outside of the training set. Research by Zhao et al.
has previously shown that registrations, along with other transformations, can
be highly effective at augmenting small training sets of medical images [13].
Zhao et al. showed that the models trained on these augmented training sets
performed much better than the models trained without such augmentations
[13]. Therefore, we hypothesized that training models on a data set augmented
using registrations would produce models that are highly accurate at predicting
implant shapes from defective skull images.

2 Methods

2.1 Data

All data was provided by the organizers of the 2020 AutoImplant challenge. A
training set was provided with images for 100 subjects along with a test set
with images for 110 subjects. The training set consisted of binary images of the
complete skull, the defective skull, and the implant for each subject. Renderings
of these images are shown in Fig. 1 for an illustrative subject. The testing set
consisted of only the defective skulls. One hundred of the testing set subjects
had defects similar in location and shape to the training set, while 10 of the
testing set subjects had defects with shapes and locations that varied from the
defects of the training set.

2.2 Augmentation

Registration. To augment the training set of images, automatic registrations
were computed between the skull images for each pair of subjects. This aug-
mentation increases the size of the training set and allows for similarly shaped
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Skull Defec�ve Skull Implant

Fig. 1. Three-dimensional mesh renderings of the skull, defective skull, and implant
images for a single subject from the training set.

skulls to have varying defect locations. With a training set of 100 images, each
individual image can be registered with and warped into the space of 99 other
images. Therefore, we attempted to warp the images via registrations and create
9,900 additional training images. Combined with the original training images,
this would make an augmented training set of 10,000 images.

The “antsRegistrationSyNQuick.sh” script from the Advanced Normaliza-
tion Tools (ANTs) package was utilized to compute the combined rigid, affine,
and non-linear symmetric image normalization (SyN) warping transformations
between skull images [2,3]. For each pair of subjects, the skull of the first subject
would be used as the moving image, and the skull of the second subject would be
used as the fixed image. The script then computed the transformations to warp
the moving image into the fixed image space. The transformations were then
applied to the complete and defective skull images to warp the moving images
into the fixed image space, and the inverse transforms were used to warp the
fixed images into the moving image space. This was repeated for every pair of
subjects in the training data set.

Permutation. In order to enhance the model’s ability to predict complete skulls
for various defect locations, the images were mirrored along the anteroposterior
and horizontal directions with a 50% probability for each training iteration.

Scaling. In order to make the model robust to variations in image scaling, the
training images were randomly zoomed in and out with a 75% probability for
each training iteration.

Translation. In order to make the model robust to variations in the position of
the skull within the image, the training images were randomly translated with
a 75% probability for each training iteration.
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2.3 Preprocessing

All of the images were cropped to remove extra background padding in the
images so that only one voxel of background padding around the non-background
area remained [1]. In order that all of the data had the same orientation prior to
being input into the model, the orientation of the images was set to Right, Ante-
rior, Superior (RAS) [1,4]. After augmentation, the images were resampled down
to a size of 176× 224× 144 voxels. Apart from the registrations, all preprocessing
and augmentation steps were performed at run time.
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Fig. 2. U-Net model architecture. The number of channels at each step is shown in
black.

2.4 Model

We used a U-Net-style convolutional neural network model with residual connec-
tions, as shown in Figure 2 [9,12]. Inspired by the research of Myronenko showing
that a large receptive field and shallow decoder performed well in the automatic
segmentation for brain tumors [12], our model used a large receptive field of
176× 224× 144 voxels. Comparatively, the baseline approach used a receptive
field of 128× 128× 64 voxels [10]. The encoder to the model consisted of five
layers, two ResNet style blocks per layer, a base width of 32 channels, dropout,
and group normalization. The outputs of each encoding layer were downsampled
using a strided convolution before being input into the next layer. The number of
channels was doubled at each consecutive layer. Each decoding layer consisted
of a single ResNet style block and took as input the output of the previous
decoding layer concatenated with the output of the encoding layer at the same
resolution. A 1× 1× 1 convolution and sigmoid activation were applied to the
output of the final decoding layer.
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2.5 Training

An ensemble of four models was trained to predict the complete skulls from the
defective skulls of the augmented training set using four-fold cross-validation.
Each model was trained using two NVIDIA V100 GPUs with 32 gigabytes of
memory each. Due to limits on computing resources, training was stopped after
seven days.

2.6 Testing

All four models were used to predict the complete skull for all 110 defective skulls
from the test set, and the results were averaged across all four models. In order to
derive the implant shape from the predicted skull shape, the defective skull was
subtracted from the predicted skull. The difference image was then thresholded
at 0.5. In order to remove spurious voxels from the predicted implant image, one
iteration of morphological opening was performed, and all voxels not connected
to the largest connected component were automatically removed.

3 Results

One hundred ninety-seven of the registrations failed, resulting in an augmented
training set of 9803 sets of complete and defective skull images. Figure 3 shows
an example of augmentations via registrations between two illustrative subjects.

The evaluation of the Dice similarity coefficients (DSC) and Hausdorff dis-
tances (HD) was computed by the organizers and reported in Table 1 and Fig. 4.
The results are shown for the 100 test cases with defects resembling that of the
training cases as well as the 10 test cases with defect shapes and locations that
varied from the training set. Qualitatively, the predicted implants matched the
shape of the holes in the defective skulls well regardless of defect shape and
location, as shown in Fig. 5.

Table 1. Mean Dice similarity coefficient (DSC) and Hausdorff distances (HD) for the
100 test cases with defects resembling the training set as well as for the 10 test cases
with defects that varied from the training set in shape and location.

Test 100 Test 10 Overall

Baseline [10] DSC 0.856 – –

HD (mm) 5.183 – –

Ours DSC 0.944 0.932 0.942

HD (mm) 3.564 3.934 3.598
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Fig. 3. Example of augmentations produced via registration. The non-linear registra-
tion is computed between the skull images of Subject A and Subject B. Then, the
defective skull, shown in gray, as well as the implant, shown in red, are warped and
translated using the computed non-linear registration. This produces two additional
sets of defective skull and implant pairs from every pair of subjects in the training set.
(Color figure online)

Fig. 4. Distribution of the Dice similarity coefficient and the Hausdorff distances for
the 100 test cases and the 10 test cases with defects that varied from the training set
in shape and location. For comparison, the average scores for the baseline method on
the 100 test cases are shown as the dashed gray line [10].
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Fig. 5. Examples of defective skulls (gray) and the predicted implants (red) from cases
in the 100-case test set (top row) and the 10-case test set (bottom row). The predicted
implants fill the defects in the skulls well regardless of defect shape and location. (Color
figure online)

4 Discussion

The evaluation metrics for our approach were much better than those reported
using the baseline approach without augmentation [10]. For reference, the mean
DSC and HD for the baseline approach on the 100 test cases was 0.855 and
5.44 mm [10], respectively, while our approach resulted in DSC and HD mea-
sures of 0.944 and 3.564 mm, respectively. This improvement in evaluation met-
rics likely resulted from a number of improvements we made over the baseline
approach. The most prominent improvement was the automatic augmentation
of the training data via registration. This augmentation prevents overfitting by
allowing similarly shaped skulls to have varying defect locations. By using regis-
trations, we were able to increase the size of the training set from 100 image pairs
to 9803 image pairs. While manually creating a training set of this size would
require an incredible amount of time, using registrations allows for the augmenta-
tions to be computed automatically without manual intervention. Furthermore,
the permuting, scaling, and translating augmentations performed during train-
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ing may have also improved performance by keeping the models from overfitting
to the training set.

The DSC and HD scores were only slightly worse for the test set of 10 sub-
jects with unique defects, as shown in Table 1 and Fig. 4, despite the models
not being trained on cases with similar defects. The ability of the models to
generalize to these cases is likely the result of using a shape completion strategy
along with permutation augmentations. The shape completion approach forced
the model to focus on generating a complete skull, regardless of the defect shape.
The permutation augmentations allowed the model to train on defects that were
flipped in orientation from the locations in the training set. Though these aug-
mentation strategies performed very well, further improvement would likely be
seen by adding skulls to the training set of images that have more variation in
defect shape and location.

To remove spurious voxels from the implant predictions, we used a morpho-
logical opening procedure that removed voxels that were only partially or weakly
connected to the predicted implant. This was effective but likely also resulted
in a loss of edge voxels at the corners of the implant that should have been
included in the prediction. Future work could focus on finding a more optimal
way to remove these spurious predictions while retaining the correctly predicted
corner voxels. One approach may be to experiment with threshold levels.

5 Conclusion

We demonstrated that registrations between anatomical CT images could effec-
tively augment a training set of images for skull shape completion. The model
trained on the augmented data set was able to accurately predict complete skull
shapes much better than the baseline approach that was trained without using
such augmentations.

Acknowledgments. This work was completed utilizing the Holland Computing Cen-
ter of the University of Nebraska, which receives support from the Nebraska Research
Initiative.
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Abstract. Designing a patient-specific cranial implant usually requires
reconstructing the defective part of the skull using computer-aided design
software, which is a tedious and time-demanding task. This lead to some
recent advances in the field of automatic skull reconstruction with use
of methods based on shape analysis or deep learning. The AutoImplant
Challenge aims at providing a public platform for benchmarking skull
reconstruction methods. The BUT submission to this challenge is based
on skull alignment using landmark detection followed by a cascade of
low-resolution and high-resolution reconstruction convolutional neural
network. We demonstrate that the proposed method successfully recon-
structs every skull in the standard test dataset and outperforms the
baseline method in both overlap and distance metrics, achieving 0.920
DSC and 4.137 mm HD.

Keywords: Skull reconstruction · Shape completion · Cascaded
convolutional networks

1 Introduction

Craniectomy is a procedure during which a specific part of the skull is resected
and eventually replaced with a cranial implant. When designing the implant,
the correct skull shape reconstruction is critical for satisfactory patient outcome.
The shape of the implant should make it possible to restore the protective and
aesthetic function of the skull and also fit very precisely along the border [7,8].
A successfully reconstructed skull should be mostly indistinguishable from a
healthy skull. The original skull shape before the resection is therefore often
used as the golden standard of the target reconstructed shape [9].

In case of unilateral defects, techniques based on mirroring the healthy part
of the skull to the defect area are often used in combination with a Computer-
Aided Design software (CAD) [2]. However, the assumption of perfectly symmet-
ric skull does not hold in most cases and manual corrections are often required.
To address these issues, recent methods aim to be completely or mostly auto-
matic and to be able to reconstruct an arbitrary part of the skull, including
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bilateral defects. One group of such methods is based on statistical shape mod-
els. In combination with geometric morphometrics, both unilateral and bilateral
defects can be reconstructed with high precision [4,5]. Another group of meth-
ods that has been gaining considerable momentum in recent months is based on
deep learning approaches. These methods usually make use of some form of volu-
metric convolutional neural networks (CNN) with an auto-encoder architecture,
although output resolution may often be limited [10–12].

This paper presents a BUT submission to the MICCAI 2020 AutoImplant
Challenge [9]. The proposed method is an adaptation of the cascaded recon-
struction CNN architecture that has been recently applied to the SkullBreak
dataset [6]. Furthermore, the method is extended by an automatic landmark-
based registration and a detail-preserving morphological post-processing step.
In our experiments, we show how different components of the method affect the
reconstruction accuracy on a validation dataset of defective skulls. Finally, we
report the results on the full testing dataset of the AutoImplant Challenge.

2 Proposed Method

The proposed method consists of several steps as illustrated in Fig. 1. The land-
mark detection step and the skull reconstruction step are handled by a 3D CNN
model.

(a) (b) (c)

(f)(e)(d)

Fig. 1. Overview of the proposed method. In the input skull volume (a) 4 landmarks
are detected (b). The skull is transformed (c) so that the detected landmarks (red) are
registered to the reference landmarks (green). Then, the skull is reconstructed by esti-
mating the missing shape (d). Finally, the result is post-processed (e) and transformed
back into the original skull coordinates (f). (Color figure online)
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2.1 Skull Alignment

The defects in the AutoImplant dataset are generated on a static position inside
the data volumes and the variability in their shapes and positions comes from
the variability of positions of the skulls. When reconstructing the shapes with
a volumetric CNN model, this introduces some difficulties. The reconstruction
model needs to implicitly learn rotational and translational invariance and it
also makes it cumbersome to exploit the symmetric properties of the skulls. To
address this, we use scale and rigid transformations to normalize the scale and
the position of the skulls.

Unlike the parameters of the scale transform that are known from the CT
acquisition process, the parameters of the rigid transformation need to be
inferred from the data. We use the positions of four anatomical landmarks,
namely the left and right auditory meatus and left and right supraorbital notch
(see Fig. 1b), to compute the transform. This allows us to avoid possible compli-
cations of using conventional registration methods, such as issues with substan-
tial differences in initial positions of the data volumes and different anatomical
regions present in the data.

We trained a simple 3D CNN model for landmark detection with a U-net
architecture using the heatmap regression approach [13]. The detection model
is illustrated in Fig. 2(left) and its training is further described in Sect. 3. After
detecting the landmarks, we find the rigid transform that moves these landmarks
onto reference landmarks placed on the xy plane using singular value decompo-
sition [1]. Even if one landmark is not detected either because of the detection
model failure or because of a skull defect, such missing detection can usually be
identified [3] and the missing landmark position can be computed from the other
three landmarks.

2.2 Skull Reconstruction

The skull reconstruction model takes the aligned binary defective skull data as
an input and produces the missing part of the skull as an output. The model
consists of two 3D CNNs with modified U-net architecture that are trained using
the soft Dice loss. Both networks have additional max-pooling and up-sampling
steps as compared to U-net to increase the field of view of the output neurons
and only one convolutional layer at each resolution as shown in Fig. 2(right).

The first network takes a full data volume at a reduced resolution as an
input and produces an estimate of the missing shape with the corresponding
resolution. A laterally flipped copy of the volume is also concatenated to the
input of this network to facilitate easier propagation of information from one
side of the skull to the other [6]. The second network takes a single patch of
the original resolution input concatenated to the up-sampled patch of the low-
resolution estimate at the corresponding position and produces the final missing
shape estimate in this patch. Both networks are trained using their respective
resolution ground-truth. Each training step comprises of two updates. First, the



Cranial Defect Reconstruction Using Cascaded CNN with Alignment 59

low-resolution network weights are updated using the low-resolution ground-
truth. Next, both low- and high-resolution networks weights are updated using
the high-resolution ground-truth. The patches are chosen randomly during the
training. Evaluating the second network using a window sliding over all the
positions in the low-resolution estimate produces the full missing shape at the
original resolution.

Fig. 2. Architectures of the 3D CNN models used for landmark detection (left) and
shape reconstruction (right).

The architecture of both of the reconstruction networks is shown in
Fig. 2(right) and the training details can be found in Sect. 3. The reconstruction
model is described in further detail by Kodym et al. [6].

2.3 Shape Post-Processing

The reconstruction model will occasionally produce outputs that contain noise,
such as disjoint objects or protuberances covering the healthy part of the skull
as shown in Fig. 3(left). We make an assumption that the missing shapes should
only consist of a single compact object. First, to isolate only the main missing
shape, we use connected component analysis and discard all objects except the
largest one. Second, we use morphological opening operation to remove any shape
protuberances with less than desired minimum shape thickness.

However, the opening operation also tends to produce overly smooth shapes
along the defect edges where it is desirable to keep the fine details produced by
the reconstruction model. To address this, we keep both the original and mor-
phologically open shapes. We then apply an additional morphological dilation to
the open shape, producing a mask that is slightly bigger than the original shape
but does not include the protuberances. Masking the original shape with such
a mask results in a shape with the original fine details but without the larger
protuberances as shown in Fig. 3(right).
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Fig. 3. Example of the detail-preserving morphological post-processing of the estimated
missing shape. Note that the undesired protuberance is removed while the fine details
are preserved along the object border.

3 Experiments

In this section, we describe the experiments and show the effect of individual
method components on the reconstruction outputs. All the experiments were
run on a system with Titan Xp GPU with 12 GB GRAM.

3.1 Landmark Detection

We manually annotated the four landmarks in all 100 training skull volumes. We
trained the landmark detection CNN model on 90 samples, leaving 10 skulls for
validation. The model was trained for 100 000 iterations using Adam optimizer
with training step 10−4 and the dataset was strongly augmented using random
rotations to ascertain that the model is able to detect the landmarks in cases of
arbitrary patient positions inside the scanner.

The results of the landmark detection on the 10 validation cases can be
seen in Fig. 4(left). The auditory meatus landmarks were detected with error
of 1.22 ± 0.70 mm while the supraorbital notch landmarks achieved a slightly
higher error of 1.84 ± 1.03 mm. An important observation is that the trained
model also succeeded in detection of all four landmarks in all the 110 testing
cases as well, and every skull could be aligned fully automatically without any
manual intervention at test time.

3.2 Missing Shape Inference

Similarly to the landmark detection model, the reconstruction networks were also
trained on 90 training samples. For the ablation experiments in this work, both
low- and high-resolution networks were trained on batches of 4 samples using
Adam optimizer with training step 10−4 for 50 000 iterations using resolution
of 3.2 mm per voxel and 0.4 mm per voxel, respectively. All data volumes were
padded to dimensions 512× 512× 512 which means that the corresponding low-
resolution samples had dimensions 64× 64× 64. Random lateral flips were used
to augment the dataset.

We trained three different reconstruction models. The basic cascade model
is trained on the original provided challenge data. The mirrored input channel
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is not used in the low-resolution network of this model as the sagittal plane is
not known. The aligned model is trained on the data that have been previously
aligned using the detected landmark positions. This also allows us to use the
mirrored channel in this model. The aligned and augmented model is also trained
on additional defective skulls that have been created from the training complete
skulls. Five defects were created on each skull using random shapes similarly
to the SkullBreak dataset, resulting in additional 450 training cases. We also
created 10 additional validation cases using the same process.

The results of the reconstruction model on the validation cases are shown
in Fig. 4(right). The basic cascade model had the worst performance on the
validation cases, achieving average Dice score of 0.835. Simply aligning the data
and adding the mirrored input to the low-resolution network in the aligned model
had a substantial effect on the model performance, reaching 0.895 Dice score and
showing the benefit of reducing the degrees of freedom of the defects during the
reconstruction. However, both models overfit strongly to the training dataset
with specific shape and position of the defects and were unable to generalize
to the additional augmented validation cases where the distribution of defect
shapes and positions is different. The aligned and augmented model trained on
the additional defective cases, on the other hand, was able to both reconstruct
the additional validation cases and increase the original data accuracy to Dice
score 0.903.

Fig. 4. Accuracy of the landmark detection (left) and the reconstruction models (right)
on the validation cases.

4 Results

We aligned both subsets of the final 110 test cases of the AutoImplant challenge
using the landmark detection model. For reconstruction, we used the aligned and
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Table 1. The results of the proposed method on the AutoImplant Challenge test
dataset in terms of Dice score and Hausdorff distance.

Test case (100) Test case (10) Overall (110)

Mean DSC 0.920 0.910 0.919

Mean HD 4.137 4.707 4.189

Fig. 5. Examples of the reconstruction results. From top row to bottom: The standard
test set, the additional test set and the augmented validation set. Reconstruction failure
could be observed in the last case of the additional test set in red color. (Color figure
online)

augmented model that had been trained for 120 000 iterations. We also increased
the first reconstruction network resolution to 1.6 mm per voxel, resulting in low-
resolution volumes of dimensions 128 × 128 × 128 voxels in the final evaluated
model. To discard the occasional artifacts, we used the post-processing method
described in Sect. 2.3. Both standard and additional subsets of the test dataset
were reconstructed completely automatically without any manual interactions.
The landmark detection model, the aligned training dataset and the augmented
training dataset are publicly available1.

The results of the proposed method on the challenge test dataset in terms of
Dice coefficient and Hausdorff distance are shown in Table 1. Several qualitative
examples of the reconstruction output on the standard subset, the additional
subset and also the augmented validation dataset are shown in Fig. 5 where one
case of reconstruction failure on the additional test set can also be observed.

1 https://github.com/OldaKodym/BUT autoimplant public.

https://github.com/OldaKodym/BUT_autoimplant_public
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5 Conclusion

Our experiments showed that the skull alignment and data augmentation tech-
niques we used increase the accuracy of the skull reconstruction. These are gen-
eral concepts that could be applied to any other reconstruction model. Although
we only encountered one failure case in our experiments, it hints at the fact that
more defect shape augmentations should be used to increase robustness of the
reconstruction model. It is currently unknown whether the achieved accuracy
in terms of Dice coefficient and Hausdorff distance could warrant clinical appli-
cability of the method. However, visual inspection of the reconstructed defects
shows no visible artifacts in most cases.

While the reconstruction method reaches good accuracy, the final shape will
usually have to be further edited by an experienced clinician in medical prac-
tice. Therefore, it would be beneficial to explore ways to include interactivity in
the implant design method, possibly drawing inspiration from interactive con-
volutional networks that have been successfully applied to segmentation tasks.
Another interesting research direction is leveraging different data representations
such point clouds or level sets.
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Abstract. Reconstruction of the craniomaxillofacial (CMF) skeleton requires
patient specific implants that restore cosmesis and protect the neural structures.
Designing 3D patient specific geometries is challenging and labor intensive
because of the lack of pre-injury information. We present an automated shape
completion framework for the MICCAI AutoImplant Challenge 2020. The auto-
mated workflow selected standardized segmented skull volumes from the skull
base to the apex. A U-Net style encoder/decoder framework was used to create
the predictive model. The training data consisted of defective skulls with matched
intact skulls. The challenge training set (100 cases) was augmented by randomly
placed cubic and spherical defects on the same 100 cases for a total of 300 samples
split 75/25% by case into a training and validation set. Probability volumes of the
predicted skulls were generated by the U-Net and segmented to create an intact
skull. Subtraction with defect skulls was used to isolate the implant geometry and
were denoised with a connected region extraction of the single largest object, fol-
lowed by a spherical topological filter. Dice Score (DSC) was 0.86 and Hausdorff
distance (HD) was 14.2 mm for the validation set of 25 skulls (×3 defect types).
Filtering improved the predicted implants with DSC of 0.87 and HD of 6.72. The
automated pipeline for generating implants, produced geometries suitable for inte-
gration into a clinical pipeline that could dramatically decrease design time, cost,
and increase reconstruction accuracy.

Keywords: Craniofacial surgery · Deep learning · Patient-specific implants

1 Introduction

The craniomaxillofacial (CMF) skeleton forms a complex three-dimensional (3D) struc-
ture that is important to both function and psychosocial well-being. CMF trauma and
pathologic disease deformity can result in major disruption of skeletal integrity, with
extensive loss of bone. Reconstructions of established deformities are compromised by
insufficient patient-specific information of prior 3D face shape and skeletal anatomy.
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Under these circumstances, accurate restoration of premorbid appearance is challeng-
ing, as the geometry of the facial structures needed to guide surgical planning and
reconstruction are unavailable.

If a pre-op CT dataset is available and covers the complete skull, implant design
following craniotomy is trivial. However, in most cases of head trauma, the defect has
already occurred before the CT is taken. Localized unilateral defects can be corrected by
mirroring the skull from theunaffected side, either automatically, orwithminimalmanual
effort. For larger, bilateral defects, the process becomes more complicated. Designed by
hand, this may require several hours of design by an experienced user.

Automated methods for predicting the skull shape would therefore be extremely
useful in removing the guesswork and dramatically reducing design times. The MIC-
CAI AutoImplant Challenge 2020 formulated the problem of automated implant design
as a shape completion problem. This formulation of the problem allows training and
evaluation of implant generation algorithms to be possible from datasets of otherwise
normal skull geometry that may be available from medical imaging repositories includ-
ing those for CT angiography, brain tumour diagnosis and treatment. In the Challenge,
the implants are synthetically created on a bony segmented CT scan such that both the
truth (either the intact skull or implant piece) and the defect skull are available.

This investigation focused on using a deep learning-based approach to perform this
shape completion task. Deepmodels, CNNs and in particular theU-Net have been shown
to be able to model many complex functions and have motivated their use for a variety of
tasks, including, segmentation, registration, filtering medical image as well as modelling
physical processes [1, 2]. The receptive fields of the features learned within most U-Net
designs in the literature are sufficient to describe object shape and texture, with deeper
features being related to larger shapes and shallower features related to texture and
allowing finer details to be modeled [3].

Statistical shape models (SSM) have been applied extensively in the literature to
the various craniofacial reconstruction problems with good results [4–6]. For example,
Fuessinger et al. [6] reported HD values of 2.22 mm. Cranial reconstruction has also
been planned indirectly using head shape models, rather than directly from the skull
shape from the Headspace database (consisting of ~1500 subjects) [4]. However, this
investigation did not pursue an SSM because of our intent to continue development
of this method and make use of open datasets and datasets within our institution to
improve robustness and performance. Deep learning methods can derive improvements
from large datasets that cannot be achieved by other methods.

2 Methods

This investigation presents an automated workflow for implant generation within the
cranium (Fig. 1). The workflow takes as input binary segmented skull volumes with
defects and generates implant volumes suitable for reconstructing the defects. The app-
roach as described below involves cropping and rescaling the input volumes, inference
of the whole intact skull volume with a U-Net, subtraction of the original skull with
defect volume and post-processing (filtering and denoising).
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Fig. 1. Workflow for generating an implant from a defect skull.

2.1 Dataset

The training dataset provided as part of the MICCAI AutoImplant grand challenge
consisted of 100 binary (bone = 1) segmented skull volumes at various fields of view,
slice spacing and head positioning. Coverage generally went from the skull base to the
apex, although several include most of the maxilla and several included coverages to the
mandible and portions of the neck. Volumes were 512 × 512 × Z where Z slices range
from 150–300. In-plane and slice spacing were variable across the dataset.

2.2 Preprocessing

Typically, there is a large air volume around the skull in a head CT (to ensure that no
anatomic regions are clipped). Also, the skull is generally much narrower along the
lateral aspect (ear to ear) than anterior-posterior (A/P) direction, such that the skull
usually only occupies a region approximately 380 × 500 (axial) at its greatest extent.
As a result, there is a significant amount of “wasted” voxels that provide no information.
As well, volumes that included extra anatomy below the midface that is unnecessary for
the given task (upper skull craniotomy restoration).

Healthy skulls have a high degree of homology (anatomic features look similar)
regardless of the size of the skull [7]. Thus, it may be beneficial to remove size variability
in the dataset by rescaling the skulls to a common size.

The skull CTs were preprocessed by first cropping the original volume to a useful
region defined by a bounding box enclosing all non-zero voxels in the x and y directions.
In the z-direction, the cropping was identified from the skull apex to approximately
the skull base. The skull base was identified by a matrix summation along the x and y
directions to create a projection vector along z. The location corresponding to the peak
projection is assumed to be the most bone which nearly always corresponds to a line
through the skull base. The cropping volume was given an additional clear boundary
of 8 voxels in each direction to avoid clipping of the bone. All volumes were then
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downsampled and rescaled into a standard 192 × 256 × 128 volume representing the
largest practical volume that would fit in GPU memory and conformal to the relative
dimensions (Medial-Lateral × Anterior-Posterior × Superior-Inferior) of the bounding
boxes containing the cranium. The data within the cropping volume were rescaled non-
isotropically to maximally fit the standard volume, with independent scaling in each
direction. Nominal “2×” downsampling was roughly between 1.4–1.8 and varied for
each skull. Pre-processed volumes are shown in Fig. 2. In one case (023), this estimate
failed, because of extremely thick bone in the frontal cortex). Skulls 000–074 were used
for training and 075–099 for validation in all cases.

Fig. 2. Digitally reconstructed radiographs (sagittal) of the training set of original defect skulls
(000–099 ordered from top left) after rescaling to a standard volume. The cropping algorithm
partially failed on 023 but was still included in the training. Skulls 075–099 were reserved for
validation for all runs.

From Fig. 2, it is apparent that nearly all the implants are localized generally to the
skull posterior and nearly identical shape. To improve generalization, two additional sets
of training/validation data were generated by creating cubic and spherical defects on the
same skulls. This was created based on defect injection code originally provided in the
challenge code base [8]. The code was modified to allow for random locations anywhere
on the skull above the horizontal midplane. A valid defective skull was allowed if the
defect removed at least 2% of the bony volume. The random defects were generated
once for each skull and defect type (100 skulls with three defects: original, cubic, and
spherical) and divided case-wise (same as original) into training/validation data,

The test sets consisted of the main data (test000–test099) as well as an additional
set (test100–test109) that was provided for the AutoImplant Challenge. These test sets
were processed in the same fashion as the training/validation sets. Upon submission, the
calculated results by the organizers were returned to the authors.
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2.3 U-Net for Shape Completion

TheU-Net [2] schemeused here is illustrated in Fig. 1. This base configuration consists of
5 levels in theU-Net,with 8filters for thefirst level anddoubling for each successive level.
Long skip connections from each down-level were concatenated to the corresponding
up-level. Each convolutional block consisted of two 3D convolutional layers, both with
(3, 3, 3) kernels followed by batch normalization, a “ReLu” activation layer and a
MaxPooling layer. The bottom (bottleneck) block consisted of two convolutional layers
(32 filters), batch normalization and ReLu activation. The up levels consisted of a 3D
transpose convolutional layer, skip concatenation and convolutional block. A softmax
output layer is used to generate 3D voxel prediction.

Training used an Adam optimizer. Learning rate began at 10−3 and was reduced by
20% if the validation loss did not improve for two epochs. We used 1-Dice Similarity
as the loss function. Batch size was limited to a single skull volume, and an epoch was
set to 150 randomly selected samples from the 225 skulls (75 unique skulls × 3 defect
types). Image augmentation was performed with randomized small lateral and anterior-
posterior shifts (−2,2 voxels), rotations in the axial plane (5), and mirroring (left-right)
of the skull volumes. Up to 30 epochs were allowed, which were terminated early if 10
epochs occurred with no improvement in the loss.

The algorithm was coded in Python (3.7.7), with the keras-gpu 2.4.3 and tensorflow-
gpu 2.2.0 modules, and inspired by “UNET-Conv3D Baseline” [9] and “Keras U-Net”
[10]. Training and analysis were run on a 3.8 GHz AMDRyzen 2600 processor (6 cores)
32 GB RAM, with a GeForce GTX 1660Ti (6 GB) GPU in Ubuntu 18.04.

Alternative Networks: To test alternative network schemes, networks were retrained
and evaluated by 1) swapping the bottleneck with a two simple dense layers (64 units
each), and 2) changing from “2×” downsampling to either: ‘full’ isotropic “1×” reso-
lution at 320 × 448 × 192 (resampling from roughly 0.8× to 1.2×) or “4×” at 96 ×
128× 64, (resampling roughly 2.75× to 4.2× downsampling depending on the axis for
each skull).

2.4 Post-processing

Predictions from the U-Net were resampled onto the original skull bounding box and
then to the original image grid. An implant bounding box was estimated by subtracting
a morphologically dilated defective skull from the prediction to mask out unneeded
bone and determining the box containing the implant by thresholding voxels greater
than 0.6. An exclusion zone of the first 10 slices near the skull base was also used to
avoid catching problematic noisy predictions in that region. In the bounding box, the
implant was calculated by thresholding the model prediction to 0.5 and subtracting the
original defective skull. Random small noisy objectswere excluded using the “connected
components 3d” (pypi.org/project/connected-components-3d/) module that extracts and
labels binary connected objects – based on code provided in the original AutoImplant
Challenge repository [8]. Within the challenge, defects were confined to the cranium. As
such, we assumed spherical topology and smooth bony prominences. A post-processing
spherical topological filter [11] was applied in 3D Slicer (www.slicer.org). Interior holes

http://pypi.org/project/connected-components-3d/
http://www.slicer.org
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were filled, and the label map was smoothed with binary closing and a level set based
anti-aliasing filter.

2.5 Analysis

The generated implants were compared to truth for the validation set. The average rela-
tive volume (Predicted Volume/Actual Volume), Dice Similarity Coefficient (DSC) and
Hausdorff Distance (HD) were reported for each defect type (original, cubic, spherical)
as well as the 90% interpercentile range (IPR) from 5th to 95th percentile of mea-
sured values, reported in brackets as “[x5th–x95th]”. All calculations after training were
performed at the original resolution.

Fig. 3. Outlines of the predicted implant before (left) and after (right) post-processing by the
topological filter. The thin finger artifacts are removed, without loss of the main implant.

3 Results

The best results achieved by the workflow were with the 2× downsampled U-Net for
the validation, test, and challenge sets. Training resulted in a dice loss of 0.038, binary
accuracy 0.963 and mean-square error (MSE) of 0.0031 calculated on the whole skull
for the 192× 256× 128 volumes. Dice loss was minimized after 19 epochs, with more
epochs not reducing loss, with training history curves confirming a plateau. Validation
dice loss was 0.006, binary accuracy 0.999 and MSE was 0.0013. Training values were
slightly worse than the validation set, likely because augmentation was only used on the
training data, and greater variation in skull poses (and the poorly cropped case 023).

Following post-processing, the relative volume, DSC, and HD were reported in
Table 1 for the network analyzed at original resolution and voxel dimensions. Adding
the post-processing step of the spherical topological filter had a small effect on the DSC,
but a dramatic effect on the HD (Table 2), with 60% reduction for all implants. This step
tended to remove thin fingerlike extensions (Fig. 3) that are an artifact of slight errors
introduced by the downsampling and resampling steps. The failing spherical implant
090 was included in the results in Tables 1 and 2. If omitted, the values in Table 2 would
improve to DSC 0.86 (+0.04) and HD 4.75 mm (−6.81) for the spherical implants,
consistent with the other defect types.

Examples of good predictions for the three defect types are shown in Fig. 4. The
sphere defects had the poorest predictions, especially for frontal defects (Fig. 5 and
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Fig. 6) Some of the cubic implants fared poorly when they were located more laterally
(near the ear). This may be partly due to an under representation of exemplar cases in
the training set for the frontal and lateral regions. Of note, for the original defect, case
085 (Fig. 5 left), the implant appears to be qualitatively good except for the lower left
margin where the prediction fails to capture the asymmetry in the original skull (most
noticeable by comparing the left and right sides around the occipital lobe).

Figure 8 shows examples of the implants predicted for the challenge test set. Table 3
lists the test set results, with good performance on the main set (DSC 0.907 and HD
4.18 mm) and only slightly less well on the more difficult set (DSC 0.87 and HD
4.75 mm). The authors note one failure (DSC 0.61) on test009 that could be fixed

Table 1. Relative volume, Dice score and Hausdorff distance (HD, in mm) for the validation set
(075–099), tested on the original, cubic, and spherical simulated skull defect shapes.

Relative volume Dice score HD

Mean [5th–95th]* IPR* Mean [5th–95th] IPR Mean [5th–95th] IPR

Original 1.02 [0.93–1.13] 0.20 0.91 [0.86–0.94] 0.09 12.45 [8.3–34.8] 26.49

Cubic 1.07 [0.84–1.37] 0.53 0.86 [0.7–0.9] 0.18 11.15 [5.–37.7] 32.71

Sphere 0.88 [0.55–1.08] 0.54 0.82 [0.9–0.9] 0.31 18.87 [9.1–49.2] 40.10

Overall 0.99 [0.77–1.25] 0.48 0.86 [0.7–0.9] 0.25 14.16 [5.2–42.4] 37.25

*Values at the 5th and 95th percentile. Interpercentile Range (IPR) is the difference between 95th
and 5th percentile in the data.

Table 2. Relative volume, Dice score and Hausdorff distance (HD) for the validation set after
filtering (cases 075–099).

Relative volume Dice score HD

Mean [5th–95th]* IPR* Mean [5th–95th] IPR Mean [5th–95th] IPR

Original 1.02 [0.93–1.13] 0.20 0.91 [0.86–0.94] 0.09 3.64 [2.43–6.01] 3.58

Cubic 1.06 [0.83–1.33] 0.50 0.86 [0.75–0.93] 0.18 4.95 [2.35–8.62] 6.27

Sphere 0.87 [0.54–1.07] 0.53 0.82 [0.63–0.94] 0.31 11.56 [2.1–11.91] 9.81

Overall 0.98 [0.76–1.24] 0.76 0.87 [0.69–0.94] 0.25 6.72 [2.17–10.2] 8.03

Table 3. Summary of DSC and HD for the test set submission

Cases DSC HD (mm)

test000-test099 0.907 [0.856–0.945] 4.18 [2.65–6.75]

test100-test109 0.87 [0.707–0938] 4.76 [2.68–8.92]

test000-test109 (combined) 0.904 [0.842–0.943] 4.23 [2.60–7.25]
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by manually selecting the skull base for preprocessing. In the spirit of “fully automatic
processing”, we left the case as is.

Alternative Networks: The bottleneck was replaced with a block consisting of two
fully connected dense layers (64 units each) which reduced the number of trainable
weights from 6,486,939 to 3,931,035. On the original and cubic defects, the dense-layer
bottleneck performed better within the validation set, with a modest improvement in
DSC (0.85 [0.78–0.91]) and dramatic improvement in HD (10.2 mm [8.3–10.0]) NB: a
few outliers greatly skewed the average in HD. However, the sphere defects had a DSC
worsened by −0.036 with only a modest improvement in HD (−2.2 mm). Although it
did not perform better overall, it does suggest further optimization is possible with more
streamlined networks.

Fig. 4. Examples of well predicted implants. Colourmaps correspond to the shortest distance (in
mm) from the implant surface to the target (truth) surface. Left is an original defect (case 080
DSC 0.95), centre is a cubic defect (case 099 DSC 0.94), and right is a spherical defect (case 084
DSC 0.97).

Fig. 5. Examples of poorly predicted implants. Left is an original defect (case 085 DSC 0.74),
centre is a cubic defect (case 091 DSC 0.66) and right is a spherical defect (case 094 DSC 0.51).

Using the smaller input volume (“4×” downsampling), training epoch times were
reduced from 496 to 29 s. On the validation set, the implants generated from the “4×”
set, the mean DSC was 0.865 [0.73–0.933] and mean HDwas 5.8 [2.52–9.44] which are
nearly unchanged from the “2×” set. However, visual inspection (Fig. 7) reveals strong
terracing artifacts that are not captured by either DSC or HD metrics. Correspondingly,
larger input volume (“1×”) were also considered and trained on a server with 128 GB
and RTX Titans with 24 GB GPU RAM. Training was confined to a single card and
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Fig. 6. The sphere defect for case 090 was entirely on the forehead bisecting the sinuses. Only
a tiny implant was predicted (<1% volume), not shown. More of the maxilla and mandible are
included than other cases, and head pose is significantly tilted laterally.

Fig. 7. Comparison surface renders (marching cubes) of the desired implant (left), the predicted
implant from the “2×” downsampled data (middle, DSC 0.92), and “4×” data (right, DSC 0.93)
for validation case 083. Note that, despite the slightly improved DSC, the “4×” is a decidedly
inferior result because of noticeable terracing.

epoch training times were larger, at 1156 s, making hyper-parameter optimization of the
model impractical. Higher resolution did not improve results in the validation set with
DSC = 0.751 [0–92.8], HD = 12.0 mm [2.26–161.68].

4 Discussion

This investigation presented a U-Net solution to the MICCAI AutoImplant grand chal-
lenge with performance suitable for use in a clinical design pipeline. The pipeline
achieved average results of DSC = 0.90 and HD = 4.23 mm, with one failed implant.
This accuracy is likely sufficient for use clinically with appropriate verification and post-
processing. The algorithm has the potential to drastically reduce design times to min-
utes, for the creation of patient-specific implants for craniofacial surgery, the algorithm
requires no user input other than to supply the initial segmentation.

The implants generated at higher resolutions were qualitatively smooth and restored
cosmesis. The errors of the generated implant designed by the algorithm within this
investigation were of a similar magnitude to other potential sources of error when recon-
structing the defect in the cranium surgically. Placement of instrumentation by trained
surgeons has beenmeasured as 1–2mmwith indexing andnavigation reducingplacement
errors to 0.5–1 mm [12].

Quantitative analysis was limited to relative volume, DSC, andHD.However, impor-
tant considerations related to the clinical need for these implants were not considered,
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such as minimizing discontinuities at the defect boundaries, ensuring that the inner
boundary does not impinge on the brain, and that the outer surface must be smooth.

The HD values were often a result of errors in implant thickness or errors in the
implant curvature. Skull thickness range from 3–14 mm and change in curvature may
still allow for adequate cosmetic restoration depending on the site of reconstruction [13].

Fig. 8. Examples of the “Additional” cases (test100-test109) in the challenge set in isometric view
(top two rows) and top view (bottom two rows). Note that these cases were deemed as challenging
by the organizers and that the ideal geometry was withheld by the challenge organizers.

The dataset used in this Grand Challenge was derived from 100 head CT volumes
taken from ~500 scans publicly provided by Qure AI (qure.ai/headct.html) With other
open databases, such as the SICASMedical Image Repository (www.smir.ch) or Cancer
ImagingArchive (www.cancerimagingarchive.net), containing hundreds of subjects that
could be used to improve the performance of deep models. Furthermore, institutions
likely have access to orders ofmagnitudemore skull CT scans than are available publicly,
potentially allowing for dramatic improvements in performance.

There are many limitations of the approach investigated here. Specifically, the vari-
ability of the data considered was quite limited, differences in pose, resolution, scan
image quality, and gantry tilt would all likely have an impact on the accuracy of the
results. The model may, therefore, not generalize well. Limited tests of the robustness of
the networks showed that errors in the cropping of the validation and test data led to large
changes in performance. This is consistent with the literature that showed differences
in image quality derived from changes in imaging hardware have been demonstrated to

http://www.smir.ch
http://www.cancerimagingarchive.net
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have significant effects on image processing. Further, our results showed differences in
performancewith the respect to defect shape.These knowneffects (image anddefect vari-
ation) could be addressed by suitable data augmentation strategies [14] and by network
architectures designed to address these issues [15].

Reorienting the skull into a standard pose (e.g., aligning to a craniometric Frankfort
horizontal plane) may reduce pose-dependent variability. Similarly, shape standardiza-
tion by a Procrustes method [16] or by 3D registration, may also reduce variability over
the crude cropping and scaling approach used here. At least one training sample (023)
and, likely, one test case (test009), were incorrectly oriented.

The trained network is likely limited to single defects following craniotomy, with
the training data drawn from an adult population. Restoration of congenital defects, or
restoration of symmetry beyond simple ‘hole filling’ is likely beyond the scope of the
network. Pediatric skull shapes have not been explored in this currentwork.Nevertheless,
given the robust, scalable, modifiable nature of the U-Net for shape completion, future
work could explore including pediatric skull training data and applying these techniques
to congenital skull malformations (e.g. craniosynostosis) [4, 17].

Finally, generation of the predicted bone is but the first step in the design. The
addition of holes for drainage and fixation, tabs to secure the implant to the surface, and
modification of the shape for areas of difficult access, are all expected steps which may
benefit from automation as well.

5 Conclusion

The proposed processing pipeline was shown to robustly generate implants with high
accuracy and visually acceptable cosmesis in a time-efficient manner by training aU-Net
architecture to predict implant shapes from the defective skull. The algorithms developed
within this investigation will be integrated within a comprehensive implant generation
framework, allowing engineers and surgeons to quickly design patient specific implants,
dramatically reducing design time from hours to minutes.

With greater public data available the approach taken in this investigation will find
new application, perhaps to the mandible and will further improve in robustness and
performance. Future work could extend the algorithm implemented here to other indi-
cations, including congenital defects, pediatric reconstructions. Further these methods
could incorporate the use of patient-specific factors, such as sex, age, or ethnicity, by
introducing meta-data within dense layers at the bottleneck to augment latent variables
within the network, aswell as generating bespoke skull shape training data-sets by sorting
according to this meta-data and oversampling these under represented geometries.
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Abstract. Designing of a cranial implant needs a 3D understanding of
the complete skull shape. Thus, taking a 2D approach is sub-optimal,
since a 2D model lacks a holistic 3D view of both the defective and
healthy skulls. Further, loading the whole 3D skull shapes at its original
image resolution is not feasible in commonly available GPUs. To mitigate
these issues, we propose a fully convolutional network composed of two
subnetworks. The first subnetwork is designed to complete the shape of
the downsampled defective skull. The second subnetwork upsamples the
reconstructed shape slice-wise. We train both the 3D and 2D networks in
tandem in an end-to-end fashion, with a hierarchical loss function. Our
proposed solution accurately predicts a high-resolution 3D implant in
the challenge test case in terms of dice-score and the Hausdorff distance.

Keywords: Cranial-implant design · Shape completion · 3D
reconstruction · Super resolution

1 Introduction

Cranial implant design is a crucial task for clinical planning of cranioplasty [13].
Previous works mainly rely on freely available CAD tools for cranial implant
design [4,6,8,14]. The time requirements and need for expert intervention for
these approaches are a major hindrance for fast and in-prompt deployment.
The AutoImplant challenge aims to look for simple and easy-to-use automatic
solution that can accurately predict cranial implants. Keeping this in mind, we
tailor our proposed solution to best fit the requirements of clinicians.

Previous literature [1] tend to exploit the geometric symmetry and predict
cranial implant based on the unaffected skull region. Nevertheless, this results
c© Springer Nature Switzerland AG 2020
J. Li and J. Egger (Eds.): AutoImplant 2020, LNCS 12439, pp. 77–84, 2020.
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Fig. 1. Few training sample: The first row depicts rendered 3D volumes of four
randomly selected defective scan from the training dataset. The second row shows the
corresponding ground truth cranial implant.

in a suboptimal solution, since the human skull is not perfectly symmetric in
reality. These solutions also fall short when the implant is not exclusively in
one hemisphere. Morais et al. [15] used a deep 3D encoder-decoder [2,11,18]
network to reconstruct the incomplete skull in low-resolution space. While the
low-resolution space facilitates faster processing, the quality of the reconstruction
lacks minute local anatomical detail. In the Autoimplant baseline paper [12], a
similar approach is taken where the authors first localize the defective region in
the skull and then predict the implant using an encoder-decoder network. While
this pipeline is suitable for modular design of accurate defective region detection
and implant prediction, the network is not end-to-end trainable, and thus any
error during the first stages would penalize the implant prediction.

In this approach, we try to alleviate this by relying on coarse-scale implant
prediction in 3D followed by fine-scale enhancement of the predicted implant.
We identify that 3D is most suitable to predict the implant since anatomical
consistency is best captured by a 3D receptive field compared to any local 2D
slices. However, to reduce the memory and computational power, we first predict
the implant in a down-sampled defective skull. Subsequently, we enhance the
predicted implant slice wise by a 2D decoder network. Thus our solution becomes
end-to-end trainable and also is efficient at the same time for the high-resolution
implant prediction task.

2 Method

The dataset is created by artificially generating the defect in the scan [12]. Thus
the original skull would be the ground truth for the implant prediction task. We
leverage this availability of the target label and cast the implant prediction task
as a supervised volumetric reconstruction task. At the core of our method lies
a 3D encoder-decoder network. This network takes the low-resolution defective



Cranial Implant Prediction Using Low-Resolution 3D Shape Completion 79

3D Encoder-Decoder
Incomplete

Scan
Reconstructed

Scan
Random Slice 2D Upsampler

Upsampled Slice

3D Loss

2D Loss

Fig. 2. Schematic overview of our proposed pipeline for predicting the cra-
nial implant. The downsampled defective scan goes through an encoder-decoder based
shape completion network. During training, N number of random reconstructed skull
goes through a second decoder network for high-resolution reconstruction. For the 3D
shape completion, we use a volumetric �1 norm, and for the 2D refinement task, we
use summation of 2D �1 loss.

skull as input and predicts a low-resolution implant at the output. We argue
that the implant prediction task lies in a lower-dimensional manifold since the
key properties to predict implant are the inner and outer surface consistency.
Hence, a down-sampled input space is sufficient for a coarse-scale identification of
the implant region. A simple element-wise subtraction of the reconstructed skull
and the input will produce the desired implant. This approach is in line with
the shape completion literature [5,9,17,19,20]. Next, we need to upsample the
predicted implant, which can be done in several ways. Classical approaches, such
as spline-based interpolation, can be a simple choice. Alternatively, a decoder
network proved to be superior in the super-resolution task [3,10]. Hence, we
incorporate a second module in our method, a 2D up-sampler. This up-sampler
takes selected axial slices during training and predicts the up-sampled version
of it. To be able to train the both the network jointly and also fit the data in
the GPU memory, we select N random slices out of the reconstructed shape
and select the corresponding slices from the original scale Ground Truth. The
error between the predicted slice and the ground truth skull is used to train the
2D decoder. The high-resolution reconstruction error, along with the 3D shape
completion error, contributes to the training of the 3D encoder-decoder.

2.1 Network Architecture and Loss Function

In the following, we describe the architecture of two subnetworks in our model
and the loss functions used to train the model.

3D Encoder-Decoder: Encoder-decoder type network has been previously
used in bio-physical simulation [7], image segmentation [16] etc. Our 3D net-
work has three sequential components, such as an encoder, bottleneck, and a
decoder. The encoder further compresses the input signals into a more com-
pact representation, which is processed in the bottleneck unit to extract useful
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features. These features go through the decoder part to reconstruct the complete
skull. The complete architecture is as follows:

IN1 → CN1
64 → CN2

64 → CN2
64 → RB64 → RB64 → RB64 → RB64 → TC2

64 →
TC2

64 → C1
1 → OUT1

where IN1 and OUT1 is input and output volume respectively with single chan-
nel, CNs

#ch is convolution with stride s and output channel #ch followed by
batch norm and ReLU, TCs

#ch is transposed convolution with stride s and out-
put channel #ch followed by batch norm and ReLU, RB#ch is residual block
consists of two successive unit of convolution with stride 1 and output channel
#ch followed by instance norm and ReLU, and Cs

#ch is convolution with stride
s and output channel #ch followed by sigmoid. Note that all convolution and
norm layers described here are 3D.

2D Decoder Upsampler: The 2D upsampler network consists of four resid-
ual blocks, followed by the nearest neighborhood upsampling layer and a final
convolution layer. The residual blocks refine the low-resolution reconstructed
scans to incorporate anatomical consistency, which aids precise high-resolution
skull at the output. We concatenate the corresponding slice of the defective scan
along with the reconstructed scan and pass it as an input to the 2D upsampler.
This helps to correct any location-wise mismatch in the 3D shape-completion
task. Borrowing a few notations defined in the previous paragraph, the complete
architecture is given below:

IN2 → CN1
64 → SE64 → RB64 → SE64 → RB64 → SE64 → RB64 → SE64 →

RB64 → NN
sqrt(512/180)
64 → NN

sqrt(512/180)
64 → C1

1 → OUT1

where SE#ch is ‘squeeze and excitation’ layer and NNs
#ch is Nearest Neighbor-

hood (NN) upsample with scale factor s and output channel #ch followed by
instance norm and ReLU. Note that all convolution and norm layers described
here are 2D.

Loss Function: Let’s denote the ground truth data at original scale as IG,
downsampled ground truth data Ig, defective 3D volume at original scale as ID,
downsampled defective 3D volume as Id, the functional form of the 3D encoder-
decoder network as S(), and the functional form of the 2D upsampler network
as U() respectively. The cranial implant is predicted as follows:

Cranial Implant = U(S(Id)) \ ID (1)

where \ denotes set difference. The total loss function of our method is as follows:

Ltotal = L3D + L2D (2)
L3D = ‖S(Id) − Ig‖�1 (3)

L2D =
∑

i∈Ω

‖U(S(Id)i) − Ii
G‖�1 (4)

where Ω is the set of random slices.
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2.2 Implementation

We realize our model in PyTorch. We trained the networks with Adam optimizer
and a learning rate of 0.0001. We used an Nvidia Quadro P6000 GPU. The batch
size for the 3D network was 1, so one volume per iteration. We downsampled
the original 3D volume by a factor of 512

180 in all dimension because that
is the largest 3D volume we can fit in our GPU along with the 2D
decoder module. The downsampled 3D volume is zero-padded in the z-
dimension to make it 180×180×180. After predicting the completed 3D shape
in low resolution, we sample 10 slices randomly along the Z-axis and concatenate
them channel-wise with the downsampled corresponding slice from the defective
skull and feed them to the upsampler decoder. We can’t fit the entire volume
with the original scale in the memory, so we have to select 2D slices. In order to
avoid overfitting, we select the slices randomly. It is important to note that, after
downsampling the volume with a 512

180 scaling factor, every 3 slices along Z-axis
in the original scale correspond to 1 slice in the downsampled volume. Thus,
after reconstructing the 3D shape, we have a set of selected slices using random
indices and three sets of [random indices/0.35], [random indices/0.35] + 1 and
[random indices/0.35] + 2. We select the corresponding slices from the defective
scan and downsample them in 2D to be concatenated with the slices from the
predicted shape. Thus, the batch size for the upsampler decoder network is 30.

Inference: For inference, similarly, a downsampled volume is fed to the network,
and it is reconstructed in low resolution using the first sub-network. After that,
all of the slices along the Z-axis are fed to the upsampler decoder, one-by-one,
and stacked in volume to reconstruct the shape in 3D. Subsequently, we subtract
the defective input scan from the high-resolution reconstructed scans to estimate
the cranial implant. Finally, as a post-processing step, we erode and dilate the
segmentation consequently with a sphere structure with a radius of 2 to remove
the noise. Subsequently, we select the largest component in the segmentation
map, using connected component analysis.

3 Experimental Results

We work with 100 data samples split 5:1 forming the training and validation set.
We validate our approach by comparing the constructed implants to the ground
truth, using the Dice score and the Hausdorff distance. The validation results
are presented in Table 1. We experimented with two variations of our

Table 1. Our score on the validation dataset

Method Dice HD-distance

Ours (Transposed Conv) 0.8363 10.6570

Ours (NN upsampling) 0.9358 7.6100
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Fig. 3. Qualitative results: The first row depicts four rendered 3D volume of defec-
tive scan from the test dataset. The second row shows the reconstructed skull by our
method of the corresponding defective skull. The third row is the corresponding cranial
implant predicted by our method. We observe that our method generalizes well and
accurately reconstruct the skull to predict the cranial implants.

2D decoder model. In the first case, we trained the original decoder,
and in the second case, we replace the NN upsampling layers of the
2D decoder with transposed convolution layers. We observe that the
2D decoder with NN upsampling layers performs significantly better than the
decoder with transposed-convolution layers. We attribute this to the over param-
eterization during the upsampling step. Since the image is binary in nature, the
nearest neighborhood upsampling layer is sufficient for this task.

Table 2. Our score on the 100 test cases.

Method Dice HD-distance

Baseline [12] 0.8555 5.1825

Ours (NN upsampling) 0.8957 4.6019

Finally, we tested our model on the challenge test set and report the results
for cases 000–099 in Table 2. Our model outperforms the baseline method pro-
posed in [12] both in the Dice score and Hausdorff distance. We did not report
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the results on cases 100–109, since the location of the defect is very different
from the training set, and the model could not predict the implant. Figure
3 shows the qualitative results of randomly selected scans from the test data
set. Visual inspection also confirms that our model estimates accurate cra-
nial implants for these cases. The source code of our model is accessible from
https://github.com/mlentwicklung/autoimplant.

4 Conclusion

We provide an efficient and compact solution for the AutoImplant 2020 chal-
lenge, which is suitable for fast and easy deployment. Our key innovation is the
incorporation of a two-stage reconstruction policy, where the first stage predicts
a coarse-scale implant, and the second stage super-resolve it to a high-resolution
one. We achieve accurate implant prediction on the validation dataset. Our
model is end-to-end in the high-resolution space and thus can serve as a baseline
for developing more complex models aiming to better learn the anatomically
invariant implant prediction.
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Abstract. Cranioplasty is a surgical operation on the repairing of cranial defects
caused by the previous operation, ischemic, or hemorrhagic disease, or even after
the removal of cranial tumors. It can be performed by filling the defective area
with a range of materials. Interactive and semi-automatic computer-aided design
tools for cranial implant design are time-consuming and costly. In this paper,
we proposed a deep learning method for automatic cranial implant generation.
The proposed method mainly included two steps. First, a variational auto-encoder
model was trained to learn the latent distribution of complete skulls. Then, the
encoder part of the pre-trained VAE together with an encoder-decoder network
was trained to generate the complete skull.We design an anatomical regularization
term to drive the predicted skull to be more anatomically plausible compared with
the ground truth skull. We evaluated the performance of our method using the
skull data from the AutoImplant Challenge. The results show that the proposed
framework performs well on the 100 test cases while has poor performance on the
10 test cases.

Keywords: Cranial implant design · Convolutional neural networks · Shape
completion · Variational Auto-encoder

1 Introduction

Cranioplasty is the surgical repair of a bone defect in the skull resulting from a previous
operation, ischemic, or hemorrhagic disease, or even after the removal of cranial tumors,
which is a well-known procedure in modern neurosurgery. Cranioplasty can restore the
contour and shape of the skull, using either skull subparts from the original complete
skull or synthetic bone substitutes with liquid form. Besides, titaniummaterials and solid
biomaterial can also be used as cranial implants. It is challenging to design a cranial
implant given the corresponding defective skull. For some situations, the procedure of
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Fig. 1. The workflow of the proposed method.

generating a cranial implant is an ill-posed problem, i.e., there exists an infinite number of
solutions, and the implant must fit the skull defect as precisely as possible. Designing the
cranial implant is usually performed by professional surgeons on commercial software,
which is costly and laborious. Thus, there is an urgent need for a fully automatic and
low-cost cranial implant design workflow. In recent years, some interactive and semi-
automatic computer-aided design (CAD) tools have been developed. In [1], authors
designed a software prototype and workflow including an interactive planning as well as
the prediction of cranial implants under MeVisLab. [2] presented a new semi-automatic
hybrid approach to reconstruct cranial implants which was landmark independent and
avoiding any patch adaptation. However, these methods are still time-consuming and
involve human intervention. Cranial implant reconstruction indeed is a volumetric shape
completion problem. The AutoImplant Challenge [3] provides a platform to evaluate
state-of-the-art methods for the prediction of cranial implants by providing defective
skulls with ground truth implant labels.

The main concern of cranial implant generation is whether the predicted implant
precisely fit the anatomical shape of the complete skull. However, previous deep learn-
ing models cannot provide explicit anatomical constraints. In this paper, we propose
a deep learning framework for the automatic generation of an anatomically plausible
cranial implant. A variational auto-encoder (VAE) model is first trained on the complete
skulls. Then, a U-net based network together with the encoder of the VAEmodel is used
to directly predict the complete skull given the defective skull. We design an anatom-
ical regularization term to drive the predicted skull to be more anatomically plausible
compared with the ground truth skull. The final cranial implant can be obtained by
subtracting the defective skull from the predicted complete skull. The workflow of the
proposed method is shown in Fig. 1.

2 Related Work

With the development of deep learning in the 3D domain, many CNN based methods
have been adopted to solve the shape completion problem [4–7]. Volumetric shape
completion is a voxel-wise prediction task and thus can be solved by convolutional neural
networks used for 3D medical image segmentation. In previous work, encoder-decoder
based architectures have been investigated a lot in medical image segmentation tasks.
The encoder-decoder model is mainly composed of an encoding path and a decoding
path. The encoding path was used to extract image features while the decoding path
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was responsible to recover dense outputs. Fully convolutional network (FCN) [7] was a
typical encoder-decoder based architecture, which has made great progress in medical
image segmentation. U-Net [8] included a skip connection between the encoding and
decoding paths to fuse high-level and low-level information effectively.

Auto-encoder is a neural network designed to learn an identity function in an unsu-
pervised way to reconstruct the original input. The encoder network in auto-encoder
translates the original high-dimension input into the latent low-dimensional code. Dif-
ferent from vanilla auto-encoder, variational auto-encoder (VAE) [9] aimed at mapping
data into a distribution. In this way, VAE can generate high dimensional structured data
by sampling random code from the learned distribution. In previous work, VAE has been
used in various tasks in computer vision, such as image translation, image segmenta-
tion, image super-resolution, novel view synthesis, etc. [11–13]. In [13], a pretrained
VAE model was used pre-trained to encode complete shape and then was applied to
multimodal shape completion in point clouds.

3 Methodology

Inspired by recent work, we propose to combine encoder-decoder architecture with
VAE for cranial implant reconstruction. Specifically, we first pretrain a VAE model to
learn the latent distribution of the complete skull. Then, we incorporate the encoder
part of VAE with an encoder-decoder network to predict the complete skull. The cranial
implant can be obtained by subtracting the input defective skull from the output complete
skull. The motivation behind the method is that the VAE encoder can map the shape and
anatomical structures of complete skulls into compact feature representation and thus we
can utilize the VAE encoder in an additional regularization term to guide the encoder-
decoder network to produce anatomically plausible skulls. In summary, our method
mainly includes two steps, i.e., VAE pretraining and complete skull generation.

3.1 VAE Pretraining

We train a VAE model on the complete skull data from the training set of AutoImplant
Challenge. Given a complete skull cx, the encoder part of the VAE model outputs the
parameters of a Gaussian probability qθ (z|x), where z is a latent vector and θ is the
learnable parameters of the encoder. A latent variable z is sampled from qθ (z|x) which
is further fed to the decoder to reconstruct the complete skull x. The decoder is param-
eterized by ϕ. We denote the decoder as pϕ(x|z). The objective function is shown as
follows:

LVAE(θ, ϕ) = −Ez∼qθ (z|x) log pϕ(x|z) + DKL(qθ (z|x)||p(z)) (1)

3.2 Complete Skull Generation

Complete skull generation can be seen as a volumetric shape completion task which is
a voxel-wise problem. Volumetric shape completion can be achieved using general 3D
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Fig. 2. The architecture of RDU-Net.

encoder-decoder networks that have been adopted in medical image segmentation tasks.
In our work, we used a U-Net basedmodel Residual Dense U-net (RDU-Net) to generate
the complete skull given the corresponding detective skull. RDU-Net was proposed in
[14] which can improve the super-resolution performance of U-Net for accelerated MRI
acquisition. The RDU-Net integrated residual dense blocks (RDB) with vanilla U-Net to
leverage the power of residual learning strategy and dense feature fusion. The RDBs can
make full use of all the hierarchical features and thus enhance the feature expressiveness.
We adopt dice loss as an objective function to train the U-Net. The dice loss measures
the shape similarity between a defective skull and its corresponding complete skull. To
provide anatomically plausible skulls, we add a regularization term to the original dice
loss. We incorporate the encoder part of pretrained VAE into the U-Net, which takes the
predicted complete skull as input and output two parameters μ and σ , where μ and σ

are the mean and standard deviation a Gaussian probability. The dice loss is defined as

Ldice = 2 ∗ ∑
ptrue ∗ ppred

∑
p2true + ∑

p2pred + ε
(2)

where ptrue and ppred are the ground truth complete skull and the output prediction,
respectively. ε is a small constant to avoid zero division.The regularization termmeasures
the distance between the latent variable of the ground truth complete skull and the output
prediction.

Lr = ∥
∥zture − zpred

∥
∥

= ∥
∥fθ (ptrue) − fθ

(
ppred

)∥
∥ (3)

Where zture and zpred are the latent variables of the ground truth complete skull and
the output prediction, respectively. fθ (∗) is the pretrained encoder of the VAE model.

Hence, the total loss for complete skull generation is

L = Ldice + γLr (4)
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where Ldice is a soft dice loss and Lr is the regularization term. γ is a hyper-parameter
to control the weight of Lr . We set γ to 0.1 in our experiments. After generating the
complete skull, the cranial implant can be obtained by subtracting the defective skull
from the complete skull.

3.3 Implementation Details

The encoder of the VAE model consists of four 3D convolution layers with stride 2
and the decoder has the same structure with the encoder except for the up-sampling
layers that increase the dimensions of features. We use batch normalization and ReLu
for normalization and activation layers, respectively. The convolution kernel size is set
to 3. For the RDU-Net model, six RDBs with down-sampling convolution layers are
used for generating skull features (the step size of each down-sampling convolution is
2), six groups of deconvolution + RDB are used for up-sampling the features. We set
the channel numbers in RDBs to 32. The detailed structure of RDU-Net is shown in
Fig. 2. Following the configuration of the baseline method [15], we trained the VAE
model and RDU-Net on downsampled defective skulls with resolution 128 × 128 × 64.
The predicted implants were upsampled to its original dimension 512 × 512 ×Z , where
Z is the number of axial slices.

4 Experiments

4.1 Datasets and Experimental Setups

We validated the proposed method on skull data from AutoImplant Challenge. We used
all complete skulls from the training set to pretrain the VAEmodel. The training set then
was randomly divided into training data and validation data. The training data included
90 subjects while the validation data consisted of 10 subjects. The RDU-Net was trained
on the training data and validated on the validation data. The model with the highest
validation performance was selected for testing. We implemented the proposed method
using Pytorch (Version 1.4.0) deep learning framework. The learning rate for training
RDU-Net was set to 0.0001 and the epochs were set to 400. The experiments were
conducted on three NVIDIA RTX 2080Ti GPUs. We did not use any data augmentation
during training and no additional defects were created from the healthy skulls in the
training set.

4.2 Results

In this subsection, we report the cranial implant generation performance of the proposed
method on both the validation set and 100 test cases. The quantitative metrics used
for evaluation include the Dice similarity score (DSC) and the symmetric Hausdorff
distance. We compared our proposed method with two baseline methods i.e., U-Net and
RDU-Net, on the validation set. The quantitative results are shown in Table 1. We can
see that with the help of residual dense blocks, RDU-Net outperforms U-Net by 0.0238
and 0.5408 for DSC and HD, respectively. The proposed method performs significantly
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Fig. 3. (A)–(D) qualitative implant prediction results on four cases of the validation set. From
left to right: the defective skull with ground truth implant; the ground truth implant; the implant
predictions of U-Net; the implant predictions of RDU-Net; the implant predictions of the proposed
method. Inaccurate outlier prediction can be seen from the results of U-Net and RDU-Net (red
arrows), while our proposedmethod generated high-quality implants with anatomical consistency.
(Color figure online)

better than RDU-Net, which validates the effectiveness of the proposed shape regularizer
using a pretrained VAE encoder.We trained the VAEmodel for 500 epochs, and the DSC
of theVAE for complete skull reconstruction can achieve 0.9981 on complete skulls from
the training set.We also provide qualitative results of U-Net, RDU-Net, and the proposed
method in Fig. 3. Finally, we evaluate our method on the 100 test cases and 10 additional
test cases. We had two submissions for the AutoImplant Challenge. The first submission
was produced by RDU-Net while the second method was associated with the proposed
method. We also compare our method with the baseline method proposed in [15]. The
quantitative results are shown in Table 2. The proposed method outperforms RDU-Net
both in the DSC and HD, and perform significantly better than the baseline in terms of
DSC. However, the performance of our method on 10 additional test cases is relatively
poor, since the defect shape and position of the 10 cases are different from the training
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Table 1. Quantitative results of the proposed method, RDU-Net, and U-Net on the validation set.

Validation set (10)

U-Net Mean DSC 0.8547

Mean HD 6.4531

RDU-Net Mean DSC 0.8785

Mean HD 5.9123

Proposed Mean DSC 0.8967

Mean HD 5.2887

Fig. 4. (A)–(D) qualitative implant prediction results on four cases of the test set. From left to right:
the defective skull; the predictions of RDU-Net; the defective skull with the predicted implant of
RDU-Net; the predictions of the proposed method; the defective skull with the predicted implant
of the proposed method.

set. Figure 4 shows the qualitative results of RDU-Net and the proposed method on the
test set.
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Table 2. Quantitative results of the proposed method, RDU-Net, and the Baseline method on the
test set. The results of the Baseline method on the additional 10 test cases were not available.

Test case
(100)

Test case (10) Overall (110)

Baseline Mean DSC 0.8555

Mean HD 5.1825

RDU-Net Mean DSC 0.8874 0.3510 0.8386

Mean HD 7.0171 29.4761 9.0588

Proposed Mean DSC 0.8910 0.4729 0.8530

Mean HD 6.9091 21.0492 8.1946

5 Conclusion

We have introduced a deep learning method for fully automatic cranial implant genera-
tion. The proposed method mainly included two steps. First, a VAEmodel was trained to
learn the latent distribution of complete skulls. Then, the encoder part of the pretrained
VAE together with an encoder-decoder network was trained to generate the complete
skull. After that, the predicted cranial implant can be obtained by calculating the differ-
ence of the generated complete skull and the corresponding defective skull. The intuition
behind this is that anatomical regularization can help to produce cranial implants that
highly consistent with the shape of complete skulls. We also utilized RDU-Net which
included residual and dense connections to enhance the performance. The results show
that the proposed method performed well on the 100 test cases while has poor per-
formance on the 10 test cases. In the future, we will implement data augmentation to
improve the generalization ability on skulls with various defect shape, size, and position.
We will try to incorporate shape constraints in an end-to-end framework instead of pre-
training a VAE model. Furthermore, a lightweight CNN based model will be designed
for cranioplasty.
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Abstract. In this study, we proposed two methods for AutoImplant
(https://autoimplant.grand-challenge.org/) - the cranial implant design
challenge. The shape of the implant is predicted based on the inputted
defective skull. This task can be accomplished either by directly pre-
dicting the implant with the defective skull, or indirectly rebuilding the
complete skull and then taking the difference between the defective and
complete skulls. In our work, a deep learning model is applied to auto-
matically predict the implant. In order to solve the problem that high
resolution images can often not be directly inputted to the deep learning
model, two proposed methods of resize and patch-based are examined.
On the test set, the proposed resize method achieves an average dice sim-
ilarity score (DSC) of 0.7350 and a Hausdorff distance (HD) of 7.2425
mm, while the proposed patch-based method achieves an average DSC
of 0.8887 and a HD of 5.5339 mm.

Keywords: Shape completion · Super-resolution · Cranioplasty ·
Deep learning · AutoImplant

1 Introduction

A cranial defect usually occurs after injury, tumor invasion or infection. The cur-
rent process of cranial implant design and manufacturing usually involves costly
commercial software and highly-trained professional users [1]. An automatic, low-
cost design and manufacturing of cranial implants can bring significant benefits
and improvements to the current clinical workflow for cranioplasty [11].

The AutoImplant Challenge [9] is organized in order to tackle the problem
of automatic cranial implant design in a data-driven manner, without relying
explicitly on geometric shape priors of human skulls [10]. The organizers pro-
vide 3D binary images of defective skulls, complete skulls and implants as the
datasets, with which the reconstruction of implants can be proceeded either

c© Springer Nature Switzerland AG 2020
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directly from defective skulls, or from the differences between defective and com-
plete skulls.

As one of the most commonly used approaches, Deep neural networks
(DNNs) have achieved state-of-the-art performance in the field of medical imag-
ing [4,5,7,12,13,15]. López-Linares et al. [13] for example, proposed to use
3D convolutional neural networks for abdominal aortic aneurysm segmentation,
combining with a data augmentation before the processing in neural networks
and a data processing of output images to improve the accuracy. Morais et al. [15]
proposed to use an encoder-decoder network to predict a complete skull from
a defective skull, which is similar with our work. However, the work of Morais
et al. uses skulls with low resolutions (303, 603 and 1203) from Magnetic Res-
onance Imaging (MRI) data, while our work deals with skulls from Computed
tomography (CT) data of a higher resolution.

2 Method

This section describes the details of (i) a proposed deep learning model struc-
ture for 3D implant prediction, and (ii) two proposed methods for solving the
problem that the original skull volumes cannot be directly inputted into a net-
work, in example, because of memory restrictions. This section includes the data
description, network architectures, training, and test procedure, proposed resize
method, and proposed patch-based method. The evaluation metrics are also
described at the end of this section.

2.1 Dataset

The AutoImplant Challenge [9] database comprises 200 binary skull datasets
(100 for training and 100 for testing) generated from CQ500 dataset [3]. The
dimension of these skulls is 512× 512×Z, where Z is the number of axial slices.
Each dataset comprises three images: one defective skull, one complete skull and
one implant. The implants can be either directly predicted from the defective
skulls or indirectly taken from the difference between the complete and defective
skulls.

2.2 Network Architecture

The network architecture examined in this study is adapted from the V-Net
network architecture proposed by Milletari et al. [14], which is another famous
3D derivation of the U-Net [16]. This model is trained end-to-end on volumes
depicting the prostate for volume segmentation. It has shown high performance
to deal with 3D imaging problems and has been widely used in the field of
medical imaging [2,8,17].

The whole model consists of two paths, which are usually called the com-
pression path and the decompression path. Both of these two paths are divided
into different stages for operations with different resolutions.
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In the compression path each stage consists of one to three convolutional
layers, while in the right decompression path the same stage has similar decon-
volutional operations. All the convolutions use volumetric kernels of size 5×5×5
applied with stride 1 and padding of 2 × 2 × 2 to keep the size of feature map
invariant. Between two adjacent stages in the compression path, there is a convo-
lutional operation with 2×2×2 voxels wide kernels applied with stride 2, which
halves the size while double the channels of feature maps in each stage. While
in the decompression path a deconvolution operation is employed in each stage
concatenated with half the number of convolutional kernels in the same stage of
the compression path. This concatenation operation, similar to U-Net, sends the
features from the compression path to corresponding positions of the decompres-
sion path to reconstruct high-quality images. The prediction is proceeded by the
soft-max layer at the end of the V-Net, which outputs the probability of each
voxel to belong to the object or not.

Another characteristic of the V-Net is the application of residual learning.
Because of the two paths structure, a complete model of V-Net has more than
20 convolutional layers, which strengthen the model to represent more complex
features. But more layers can also cause troubles, in which the most important
is called the degradation problem. It means with more layers built in a deep
learning model, the accuracy rate will saturate first and then decrease sharply.
The method of residual learning proposed by He et al. [6] was developed to
solve this problem. In this model, the input of each stage is used in following
convolutional layers while also added to the output of the last convolutional
layer of that stage. This method has handled the problem of degradation well
compared with the original U-Net model.

2.3 Resize Method

As shown in Fig. 1, the resize method firstly resizes the original images
(512 × 512 × Z) to a constant size (256 × 256 × 64). The resized images are
inputted directly into the network, of which the outputs are complete skulls.
The predicted implants are calculated based on the differences between defec-
tive and complete skulls. After that, the implants are resized back to the original
resolutions with Gaussian interpolation. Finally a denoising method, which is to
keep one object that has the most voxels and remove other objects, is used to
improve the prediction accuracy.

The main advantage of the resize method is that all the features of one
inputted defective skull can be used simultaneously to predict the complete one,
which makes it concise to design and apply the deep networks. Nonetheless, the
main problem of the resize method is the accuracy loss during the resize steps. It
is crucial to select a suitable method for resizing the implant back to the original
resolution.
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Fig. 1. Process of the resize method. The original defective skulls are resized to
256× 256× 64 and then inputted into the network. The implants are obtained via the
difference of the outputted complete skulls and the inputted defective skulls. Finally
the implants are resized back to the original sizes and then denoised to improve the
prediction accuracy.

2.4 Patch-Based Method

As shown in Fig. 2, the patch-based method splits the original defective skull
into 3D slices with a constant size (256 × 256 × 64). Each slice is a part of the
original image and is propagated into the network. The output has the same size
of the slice and can be combined to reconstruct the predicted implant. During
the reconstruction process, the same denoising method as described in Sect. 2.3
is used.

Compared with the resize method, the patch-based method has some draw-
backs, such as the class imbalance and the incoherence between slices. These
problems usually occur, because a slice cannot contain all the features from the
original image. But these slices can be combined to reconstruct images with
original resolutions, so the resize steps, which will reduce the accuracy of the
prediction results, are not necessary anymore.
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Fig. 2. Process of the patch-based method. The original defective skulls are split into
slices with constant patch shape of 256 × 256× 64 and stride shape of 128 × 128× 32.
For example, an original image with the size of 512 × 512 × 256 is split into 63 slices
([0, 256]2[0, 64], [0, 256]2[32, 96], [0, 256]2[64, 128], ...). All the slices are inputted into the
network separately and the resulted slices are combined to reconstruct the implants.

2.5 Evaluation Metrics

Two evaluation metrics, dice similarity score (DSC) and Hausdorff distance
(HD), are used in our study to evaluate the results of predicted implants. DSC
is a statistic used to measure the similarity of the predicted and ground-truth
implants. It is defined as:

DSC =
2|P ∩ G|
|P | + |G| (1)
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where |P | and |G| are the number of implants voxels in the prediction and
ground-truth images, respectively.

HD is used to measure how far the predicted implants are from the ground-
truth ones. It is defined as:

dH(P,G) = max{sup
p∈P

inf
g∈G

d(p, g), sup
g∈G

inf
p∈P

d(p, g)} (2)

where sup represents the supremum and inf the infimum, and d is the Euclidean
distance.

3 Experiments and Results

In this section, we demonstrate the advantage of the proposed resize method and
the proposed patch-based method. In Experiment 1, we examine the performance
of the proposed resize method on the V-Net model. In Experiment 2, we examine
the performance of the proposed patch-based method on the same V-Net model.
Both experiments are performed with GPUs from Google Colab (https://colab.
research.google.com/). The network is trained for both experiments with a total
of 30 epochs. The weights of the network are updated by the Adam algorithm
with an initial learning rate l0 = 10−2 following the schedule of l0 × 0.110epochs.
For the loss function, a combination of Dice loss and cross entropy loss is used
to solve the class imbalance problem of the dataset.

3.1 Experiment 1

In the first experiment, we examined the performance of the proposed resize
method on a neural network. We first resized all images of the training and test-
ing datasets to the resolution of 256× 256× 64. Thereafter, the model is trained
to predict the complete skulls from defective ones. The differences between the
input and output are taken to make the implants. We finally resize the implants
back to the original resolutions. The experimental results of DSC and HD are
shown in Fig. 3 and 4, respectively.

3.2 Experiment 2

In the second experiment, the performance of the proposed patch-based method
is examined. We applied the same model structure as for Experiment 1. Slices
are created for all datasets with the patch shape of 256×256×64 and the stride
shape of 128 × 128 × 32. In each iteration, one slice is randomly selected to crop
the defective skull as input and the implant as ground truth. A limitation is that
the model is only trained with patches that have at least one voxel of foreground
(implant), in order to reduce the class imbalance problem.

The test data are also cropped into 3D slices with the same shapes of patch
and stride as training process. To predict the implants with the original resolu-
tions, all the slices from one original test image are inputted into the network.

https://colab.research.google.com/
https://colab.research.google.com/
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The outputs of network are the possibilities of each voxel being the implant. Due
to the shape of patch and stride, one voxel can have multiple outputs from the
network. The mean value of these possibilities determines the final prediction of
this voxel. The experimental results of DSC and HD are shown in Fig. 3 and 4,
respectively.

Fig. 3. DSC boxplots of the 100 test cases with resize (left) and patch-based (right)
methods.

Fig. 4. HD boxplots of the 100 test cases with resize (left) and patch-based (right)
methods.

4 Discussion and Conclusion

Due to the computational limitation of training the state-of-the-art networks
using GPU, we were not able to input the whole skull volume of size 512×512×Z
to a neural network for training. To overcome this problem, we developed and
applied two methods: a resize method and a patch-based method. The former
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one changes directly the sizes of the original images and inputs them into the
neural network, while the latter one inputs part of the original images to train
the network.

Fig. 5. (A)–(D) implant prediction results on four images from the test dataset. From
left to right: the input defective skulls; the predicted implants with resize method;
the predicted implants with patch-based method; overlay of the implants from resize
method (fourth column) and patch-based method (fifth column) on the defective skulls.
Different colors are used for the implants (red) and skulls (gray). (Color figure online)

Based on the comparison of the testing results in Table 1, even with the
same model structure and training process, the final results with the patch-
based method is much better than the results of the resize method. Hence, it
can be concluded that a simple resize algorithm can lead to big degradation in
the accuracy of images, which is much worse than the problems that occur with
the patch-based method. A qualitative comparison between the results of resize
method and patch based method is shown in Fig. 5.

To improve the resize method, a more accurate image resize algorithm should
be applied to increase the quality of the resized images. As an example, the
original defective skulls can be used as seeds to help with the reconstruction of
the implants with region growing or particle filter algorithms. To improve the
patch-based method, some solutions should be applied to solve the problems
during the training and prediction, such as the incoherence between slices and
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Table 1. DSC and HD for the 100 test cases.

DSC HD (mm)

Resize 0.7350 7.2425

Patch 0.8887 5.5339

the class imbalance. In our work, during the training process, only slices with
implant voxels in ground truth images are used as input, while in the testing
process, prediction of one voxel is made based on the combination of all relevant
slices.
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Abstract. Cranioplasty is the process of repairing cranial defects or
deformations, which may be the result of injuries or necessary medi-
cal treatments such as brain tumor surgery. For this procedure, it is
necessary to generate a high-quality cranial implant, which needs to be
shaped individually for each skull and each defect. This tends to be a
very time consuming task and requires also in-depth knowledge of various
CAM/CAD programs. In this work, we present a novel automatic three-
stage implant generation pipeline. First, skull completion is conducted in
low resolution using a trained artificial neural network (ANN). Second,
the completed low-resolution skull is sent to a super-resolution network,
which up-samples the low-resolution skull to higher resolution while, at
the same time, filling the skull surface with geometric details. Finally, by
simple subtraction and blob filtering, the desired high-resolution implant
is generated.

Keywords: Shape completion · Super-resolution · Cranioplasty ·
Deep learning

1 Introduction

1.1 Motivation

Cranioplasty is the process of repairing cranial defects or deformations. The
aim of this procedure is to reestablish the aesthetic shape of the head and to
protect the brain from further injuries [2]. To do so, it is necessary to generate
an implant, which has the same size and shape as the original skull fragment.
This has to be done for each patient individually, since each skull can have
unique shape and defect. Currently, the cranial implant design pipeline is built
upon interactive CAD software and involves several steps [1,3,5,9]: acquiring
and segmenting the head CT, converting the skull into 3D model and designing
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the implant to fill the defect on the 3D model. Then, the implant is exported to
a printable data format (e.g., stl). This turns out to be a time consuming and
expensive procedure, which requires knowledge of several different programs and
intensive manual work. Given the shortcomings of current clinical practice, Li et
al. developed a web-based system that allows a fully automated cranial implant
design pipeline [8]. The automated cranial implant design is facilitated by deep
learning algorithms [6]. This study aims to explore this possible path and to
discover a way to ease cranial implant generation, using deep learning.

1.2 Problem Formulation

The skull reconstruction can be viewed in terms of the simple addition:

R = D + I (1)

where R denotes the reconstructed skull, D the defective skull and I the cra-
nial implant. This resembles the basic approach of importing the damaged skull
into programs like Blender and shaping an implant to fill the hole. A different
approach is given by reordering the equation to:

I = R−D (2)

Here, the implant is generated by subtracting the defective skull from a recon-
structed skull. The reconstruction itself can be a fully automated procedure,
where the input is D [10]. However, the reconstruction needs to provide the
complete skull at a high resolution, which requires large amount of memory.
It becomes unfeasible when the available computational resources are limited.
To mitigate this problem, we propose a coarse-to-fine framework: skull shape
completion is first done in low resolution and the resultant coarse skull is then
up-sampled to high resolution via a super-resolution network. This framework
has the advantage of producing high resolution implant at a low computation
cost. The final implant generation is therefore given by:

I = fS(fR(DL)) −D (3)

where fS() denotes the super-resolution function, fR() the reconstruction func-
tion and DL the low resolution representation of the defective skull.

The approach used in the work of Li et al. [4,7] is the most similar to that
of this study. In particular, both approaches follow a coarse-to-fine scheme
in generating high-resolution implants. Li et al. first predict coarse implants
from low-resolution data. In the second step, high-resolution (fine) implants are
generated based on the coarse implants from the previous step. Each step is
based on an autoencoder-style network. Both approaches are fully data-driven
and automatic.
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2 Methods

2.1 Overview

The aim of this project is to explore a new way for fast and computationally
efficient generation of cranial implants. One possible approach for implant gen-
eration, using an auto-encoder neural network, has been taken by Morais et al.
[10]. This has proven to be a viable way to reconstruct the volumetric shape of a
skull, but showed that a high amount of GPU-memory is needed to process any
input with a resolution higher than 603. To mitigate this problem, this project
combines the reconstruction capabilities of convolutional neural network (CNN)
with a second network, which is trained for volumetric super-resolution tasks.
This is done according to the following steps:

1. First a CNN is trained on low-resolution representation of the defect skulls
(303) for shape completion.

2. Second, a second CNN is trained for volumetric super-resolution on the output
of the first step, which up-samples the low-resolution skull to high resolution.
The process is able to recover geometric details on the skull surface compared
to using simple interpolation.

3. Third, the cranial implant is generated by subtracting the high-resolution
defective skull from the output of the second step.

The advantage of this approach is that the reconstruction can be done at a
low resolution and the super-resolution network deals with the high-resolution
data only at the last layers, which keeps the memory consumption as low as
possible. Figure 1 shows the pipeline.

Fig. 1. Skull-Reconstruction Pipeline, including low-resolution skull shape completion
and volumetric shape super-resolution. From left to right: low-resolution defective skull
and reconstructed skull, high-resolution complete skull.

2.2 Data-Set Preparation

This study is based on the dataset provided by Ana Morais [10]. Three data-
sets with resolution 303, 603 and 1203 are available. At each resolution, there
are 890 training examples, each example consisting of a defect skull and the
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corresponding complete skull, and 222 test examples. Each skull is formatted as
a 3D binary voxel occupancy grid. In this study, the skull shape completion is
carried out on resolution 303 and the super-resolution network up-sampled the
303 skulls to 603.

2.3 Skull Reconstruction

Architecture. The structure of the reconstruction network is loosely based on
[11]. The idea is that the encoder path of the UNet will be able to learn the shape
of the skull and therefore be able to reconstruct the missing parts, while the high-
resolution skip connection preserves the existing parts. The chosen structure is
illustrated in Fig. 2:

Fig. 2. Architecture of the reconstruction-network. On each layer shows the size of the
output as well as the number of feature maps. The kernel size for all the layers is set
to 33.

Training. The following parameters were chosen to train the network: Training
time: 15 epochs. Batch size: 1. Loss-Function: Binary Cross Entropy (BCE).
Optimizer: Stochastic Gradient Descent (SGD). Learning Rate: 0.1. Momentum:
0.9. The number of training epochs was chosen relatively small, since plenty of
test runs showed a high convergence speed. Training beyond this showed signs
of overfitting.
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2.4 Skull Super-Resolution

Architecture. The purpose of the super-resolution network is to increase the
resolution of the reconstructed skulls (from 303 skulls to 603). In contrast to a
direct up-sampling approach based on interpolation, a neural network learns not
only to up-sample a skull but also to recover the geometric details on the skull
surface.

Fig. 3. Architecture of the super-resolution network.

As shown in Fig. 3, the network itself resembles the reconstruction network,
as it is also based on the U-Net architecture, but incorporates the pixel-shuffle
technique [12] to increase the voxel count. In these pixel-shuffle layers, each
resulting channel is formed by shuffling eight input channels. Additional convo-
lutions are used in between to match the channel counts of the skip connections.
In the end, a 1 × 1 × 1 convolution is used to reduce the remaining 64 channels
to one and a sigmoid layer is used to obtain the final output.

Training. Network training parameters: Training time: 20 epochs. Training-
Set size: 890 examples. Validation-Set size: 222 examples. Batch size: 1. Loss-
Function: Binary Cross Entropy (BCE). Optimizer: Stochastic Gradient Descent
(SGD). Learning Rate: 0.1. Momentum: 0.9.

2.5 Implant Generation

The implant generation pipeline is shown in Fig. 4 and contains four steps: (1)
Feed the defective skull (303) to the trained reconstruction network. (2) Feed the
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output of the reconstruction network to the trained super-resolution network.
(3) Subtract the high-resolution defective skull (603) from the output of the
super-resolution network. (4) Filter the output to get rid of noisy voxels.

Fig. 4. Implant generation pipeline.

Fig. 5. Implant before and after filtering.

While the super-resolution network preserves the skull shape very well, it
tends to hallucinate additional parts in the lower region of the skull. To get
rid of these parts and obtain the isolated implant, a 3D connected components
analysis was adopted after a morphological “opening” and “closing” operation,
which helps to suppress unwanted thin connections among close segments. Since
morphological operations degrade the shape and surface of the entire implant, the
isolated implant is not used directly but as a segmentation mask on the original
unfiltered input. This way the implant is as close as possible to the output of
the super-resolution network. Figure 5 shows the effect of such filtering.

3 Results

3.1 Reconstruction

The reconstruction network delivered very good results on the 222 examples of
the 303 validation data-set. The average dice similarity coefficient (DSC) was
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Table 1. DSC of the skull (s) and implant (imp)

Rec (s)Super-res (s)Cubic interp (s)Super-res (imp)Cubic interp (imp)

Average0.9967 0.8128 0.7418 0.8337 0.6883

Min 0.9817 0.6865 0.7069 0.5307 0.4132

Max 1.0 0.8619 0.7639 0.9452 0.7705

Fig. 6. Dice-Score distribution for reconstruction (left), super-resolution (middle) and
implant generation (right)

0.9967 with a minimum of 0.9817 and one perfectly reconstructed example. The
DSC distribution is shown in Fig. 6. It is especially noteworthy that the network
can reproduce input skull structures perfectly without noticeable hallucination
(Fig. 7). Further investigation needs to be taken to figure out whether the net-
work can maintain such high performance on skulls of higher resolution.

Fig. 7. Sample output of the skull reconstruction network on the 303 data.

3.2 Super-Resolution

To rate the super-resolution performance, the up-sampling was also conducted
on the skulls by using simple cubic interpolation, which yielded an average DCS
of 0.7418. In comparison, the super-resolution network had an average DCS of
0.8128.
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As can be seen in Fig. 8, the network output looks substantially more natural
than the interpolated version. Still, in comparison with the interpolation, the
DSC of the network are distributed with higher variance as can be seen in Fig. 6.

Fig. 8. Low-resolution input (top left), cubic interpolation output (top right), high-
resolution target (bottom left), SR-network output (bottom right).

3.3 Full Implant Generation

The final evaluation was carried out on the implants produced according to the
pipeline illustrated in Fig. 4. A comparison with cubic interpolation is made.
The implants are obtained by taking the difference between the high-resolution
defective skulls (603) and the corresponding healthy skulls. The healthy skulls
come from two sources: interpolation and the super-resolution network. Over-
all, the network yielded better scores for the implant generation, compared to
the cubic interpolation according to Fig. 6. Conducting the implant generation
proved more difficult than expected. This is due to the hallucination behaviour
of the super-resolution stage. After subtracting the defect skull from the recon-
structed skull, these hallucinations lead to blobs, which made additional filter-
ing necessary. The filtering algorithm is very sensitive to thin structures. If these
structures remain too big, the filtering concentrates on the wrong parts and thus
returns a wrong implant. On the 222 validation examples, this happened 14 times
for the network output and 2 times for the interpolation output. By applying
opening and closing to the implant, it was possible to fix some of these examples
manually. Figure 9 shows a illustration of a implant obtained by interpolation
and by the super-resolution network.
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Fig. 9. Defect high-res skull (top left), cubic interpolated implant (top right), super-
resolution implant (bottom left), ground truth (bottom right)

4 Discussion

In this project we presented a possible approach to generate implants for cranio-
plasty. The implant generation was split into 3 parts. Low resolution reconstruc-
tion, skull super-resolution and subtraction and filtering. The reconstruction net-
work proved to be a very efficient way to reconstruct the given low resolution data.
It provided good scores and high shape accuracy. The super-resolution network
also delivered good results compared to an cubic interpolation upsampling stage.
While the overall shape of the skull presented itself way more natural, it suffered
from random hallucinations introduced by the network. To mitigate this problem
more focus needs to be taken on the super-resolution network structure. The high
resolution defective skull data could be used in the later layers of the network to
act as a guide for the existing skull parts. The suppression of hallucinations turned
out to be an important task for the third stage. Here the random hallucination
blobs, which remained after subtraction and filtering, lead to problems with the
automatic implant generation. Still the network hit higher scores compared to the
cubic interpolation variant. In summary, the project showed the potential to cre-
ate a new and efficient way for automatic cranial implant generation.
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